Robots

KUKA Roboter GmbH

KR QUANTEC extra

With F and C Variants Specification

Issued: 01.09.2016

Version: Spez KR QUANTEC extra V8

KUKA KR QUANTEC extra

© Copyright 2016 KUKA Roboter GmbH Zugspitzstraße 140 D-86165 Augsburg Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without the express permission of KUKA Roboter GmbH.

Other functions not described in this documentation may be operable in the controller. The user has no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to guarantee total conformity. The information in this documentation is checked on a regular basis, however, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

Translation of the original documentation

KIM-PS5-DOC

Publication: Book structure: Version: Pub Spez KR QUANTEC extra (PDF) en Spez KR QUANTEC extra V8.3 Spez KR QUANTEC extra V8

Contents

1	Introduction
1.1	Industrial robot documentation
1.2	Representation of warnings and notes
2	Purpose1
2.1	Target group1
2.2	Intended use
3	Product description
3.1	Overview of the robot system
3.2	Description of the manipulator
4	Technical data1
4.1	Technical data, overview
4.2	Technical data, KR 210 R2700 extra
4.2.1	Basic data, KR 210 R2700 extra 2
4.2.2	Axis data, KR 210 R2700 extra
4.2.3	Payloads, KR 210 R2700 extra
4.2.4	Loads acting on the foundation, KR 210 R2700 extra
4.3	Technical data, KR 180 R2500 extra
4.3.1	Basic data, KR 180 R2500 extra
4.3.2	Axis data, KR 180 R2500 extra
4.3.3	Payloads, KR 180 R2500 extra
4.3.4	Loads acting on the foundation, KR 180 R2500 extra
4.4	Technical data, KR 180 R2500 extra F
4.4.1	Basic data, KR 180 R2500 extra F
4.4.2	Axis data, KR 180 R2500 extra F
4.4.3	Payloads, KR 180 R2500 extra F
4.4.4	Loads acting on the foundation, KR 180 R2500 extra F
4.5	Technical data, KR 180 R2500 extra F-HP
4.5.1	Basic data, KR 180 R2500 extra F-HP
4.5.2	Axis data, KR 180 R2500 extra F-HP
4.5.3	Payloads, KR 180 R2500 extra F-HP
4.5.4	Loads acting on the foundation, KR 180 R2500 extra F-HP
4.6	Technical data, KR 180 R2500 extra C
4.6.1	Basic data, KR 180 R2500 extra C
4.6.2	Axis data, KR 180 R2500 extra C
4.6.3	Payloads, KR 180 R2500 extra C
4.6.4	Loads acting on the foundation, KR 180 R2500 extra C
4.7	Technical data, KR 180 R2500 extra C-F
4.7.1	Basic data, KR 180 R2500 extra C-F
4.7.1	Axis data, KR 180 R2500 extra C-F 5
4.7.2	Payloads, KR 180 R2500 extra C-F
4.7.3	Loads acting on the foundation, KR 180 R2500 extra C-F
4.7.4 4.8	
4.8.1	Basic data, KR 180 R2500 extra C-F-HP
4.8.2	Axis data, KR 180 R2500 extra C-F-HP 6

KUKA KR QUANTEC extra

4.8.3	Payloads, KR 180 R2500 extra C-F-HP
4.8.4	Loads acting on the foundation, KR 180 R2500 extra C-F-HP
4.9 T	echnical data, KR 150 R2700 extra
4.9.1	Basic data, KR 150 R2700 extra
4.9.2	Axis data, KR 150 R2700 extra
4.9.3	Payloads, KR 150 R2700 extra
4.9.4	Loads acting on the foundation, KR 150 R2700 extra
4.10 T	echnical data, KR 150 R2700 extra F
4.10.1	Basic data, KR 150 R2700 extra F
4.10.2	Axis data, KR 150 R2700 extra F
4.10.3	Payloads, KR 150 R2700 extra F
4.10.4	Loads acting on the foundation, KR 150 R2700 extra F
	echnical data, KR 150 R2700 extra F-HP
4.11.1	Basic data, KR 150 R2700 extra F-HP
4.11.2	Axis data, KR 150 R2700 extra F-HP
4.11.3	Payloads, KR 150 R2700 extra F-HP
4.11.4	Loads acting on the foundation, KR 150 R2700 extra F-HP
	echnical data, KR 150 R2700 extra C
4.12.1	Basic data, KR 150 R2700 extra C
4.12.2	Axis data, KR 150 R2700 extra C
4.12.3	Payloads, KR 150 R2700 extra C
4.12.4	Loads acting on the foundation, KR 150 R2700 extra C
	echnical data, KR 150 R2700 extra C-F
4.13.1	Basic data, KR 150 R2700 extra C-F
4.13.2	Axis data, KR 150 R2700 extra C-F
4.13.3	Payloads, KR 150 R2700 extra C-F
4.13.4	Loads acting on the foundation, KR 150 R2700 extra C-F
	echnical data, KR 150 R2700 extra C-F-HP
4.14.1	Basic data, KR 150 R2700 extra C-F-HP
4.14.2	Axis data, KR 150 R2700 extra C-F-HP
4.14.3	Payloads, KR 150 R2700 extra C-F-HP
4.14.4	Loads acting on the foundation, KR 150 R2700 extra C-F-HP
4.15 T	echnical data, KR 120 R2900 extra
4.15.1	Basic data, KR 120 R2900 extra
4.15.2	Axis data, KR 120 R2900 extra
4.15.3	Payloads, KR 120 R2900 extra
4.15.4	Loads acting on the foundation, KR 120 R2900 extra
4.16 T	echnical data, KR 180 R2500 extra F
4.16.1	Basic data, KR 120 R2900 extra F
4.16.2	Axis data, KR 120 R2900 extra F
4.16.3	Payloads, KR 120 R2900 extra F
4.16.4	Loads acting on the foundation, KR 120 R2900 extra F
	echnical data, KR 120 R2900 extra F-HP
4.17.1	Basic data, KR 120 R2900 extra F-HP
4.17.2	Axis data, KR 120 R2900 extra F-HP
4.17.2	Payloads, KR 120 R2900 extra F-HP
4.17.3	-
	Loads acting on the foundation, KR 120 R2900 extra F-HP
	echnical data, KR 120 R2900 extra C
4.18.1	Basic data, KR 120 R2900 extra C

4.18.2 Axis data, KR 120 R2900 extra C	1
4.18.3 Payloads, KR 120 R2900 extra C	1
4.18.4 Loads acting on the foundation, KR 120 R2900 extra C	1
4.19 Technical data, KR 120 R2900 extra C-F	1
4.19.1 Basic data, KR 120 R2900 extra C-F	1
4.19.2 Axis data, KR 120 R2900 extra C-F	1
4.19.3 Payloads, KR 120 R2900 extra C-F	1
4.19.4 Loads acting on the foundation, KR 120 R2900 extra C-F	1
4.20 Technical data, KR 120 R2900 extra C-F-HP	1
4.20.1 Basic data, KR 120 R2900 extra C-F-HP	1
4.20.2 Axis data, KR 120 R2900 extra C-F-HP	1
4.20.3 Payloads, KR 120 R2900 extra C-F-HP	1
4.20.4 Loads acting on the foundation, KR 120 R2900 extra C-F-HP	1
4.21 Technical data, KR 90 R3100 extra	1
4.21.1 Basic data, KR 90 R3100 extra	1
4.21.2 Axis data, KR 90 R3100 extra	1
4.21.3 Payloads, KR 90 R3100 extra	1
4.21.4 Loads acting on the foundation, KR 90 R3100 extra	1
4.22 Technical data, KR 90 R3100 extra F	1
4.22.1 Basic data, KR 90 R3100 extra F	1
4.22.2 Axis data, KR 90 R3100 extra F	1
4.22.3 Payloads, KR 90 R3100 extra F	1
4.22.4 Loads acting on the foundation, KR 90 R3100 extra F	1
4.23 Technical data, KR 90 R3100 extra F-HP	1
4.23.1 Basic data, KR 90 R3100 extra F-HP	1
4.23.2 Axis data, KR 90 R3100 extra F-HP	1
4.23.3 Payloads, KR 90 R3100 extra F-HP	1
4.23.4 Loads acting on the foundation, KR 90 R3100 extra F-HP	1
4.24 Technical data, KR 90 R3100 extra C	1
4.24.1 Basic data, KR 90 R3100 extra C	1
4.24.2 Axis data, KR 90 R3100 extra C	1
4.24.3 Payloads, KR 90 R3100 extra C	1
4.24.4 Loads acting on the foundation, KR 90 R3100 extra C	1
4.25 Technical data, KR 90 R3100 extra C-F	1
4.25.1 Basic data, KR 90 R3100 extra C-F	1
4.25.2 Axis data, KR 90 R3100 extra C-F	1
4.25.3 Payloads, KR 90 R3100 extra C-F	1
4.25.4 Loads acting on the foundation, KR 90 R3100 extra C-F	1
4.26 Technical data, KR 90 R3100 extra C-F-HP	1
4.26.1 Basic data, KR 90 R3100 extra C-F-HP	1
4.26.2 Axis data, KR 90 R3100 extra C-F-HP	1
4.26.3 Payloads, KR 90 R3100 extra C-F-HP	1
4.26.4 Loads acting on the foundation, KR 90 R3100 extra C-F-HP	1
4.27 Supplementary load	1
4.28 Plates and labels	2
4.29 REACH duty to communicate information acc. to Art. 33 of Regulation (EC) 1907/2006	
4.30 Stopping distances and times	2
4.30.1 General information	2
4.30.2 Terms used	2
	-

KUKA KR QUANTEC extra

4.30.3	Stopping distances and times, KR 210 R2700 extra 202
4.30.3.1	Stopping distances and stopping times for STOP 0, axis 1 to axis 3 209
4.30.3.2	Stopping distances and stopping times for STOP 1, axis 1
4.30.3.3	Stopping distances and stopping times for STOP 1, axis 2 202
4.30.3.4	Stopping distances and stopping times for STOP 1, axis 3 21
4.30.4	Stopping distances and times, KR 180 R2500 extra 21
4.30.4.1	Stopping distances and stopping times for STOP 0, axis 1 to axis 3
4.30.4.2	Stopping distances and stopping times for STOP 1, axis 1
4.30.4.3	Stopping distances and stopping times for STOP 1, axis 2
4.30.4.4	Stopping distances and stopping times for STOP 1, axis 3
4.30.5	Stopping distances and times, KR 180 R2500 extra C
4.30.5.1	Stopping distances and stopping times for STOP 0, axis 1 to axis 3
4.30.5.2	Stopping distances and stopping times for STOP 1, axis 1
4.30.5.3	Stopping distances and stopping times for STOP 1, axis 2
4.30.5.4	Stopping distances and stopping times for STOP 1, axis 3
4.30.6	Stopping distances and times, KR 150 R2700 extra
4.30.6.1	Stopping distances and stopping times for STOP 0, axis 1 to axis 3
4.30.6.2	Stopping distances and stopping times for STOP 1, axis 1
4.30.6.3	Stopping distances and stopping times for STOP 1, axis 2
4.30.6.4	Stopping distances and stopping times for STOP 1, axis 3
4.30.7	Stopping distances and times, KR 150 R2700 extra C
4.30.7.1	Stopping distances and stopping times for STOP 0, axis 1 to axis 3
4.30.7.2	Stopping distances and stopping times for STOP 1, axis 1
4.30.7.3	Stopping distances and stopping times for STOP 1, axis 2
4.30.7.4	Stopping distances and stopping times for STOP 1, axis 3
4.30.8	Stopping distances and times, KR 120 R2900 extra
4.30.8.1	Stopping distances and stopping times for STOP 0, axis 1 to axis 3
4.30.8.2	Stopping distances and stopping times for STOP 1, axis 1
4.30.8.3	Stopping distances and stopping times for STOP 1, axis 2
4.30.8.4	Stopping distances and stopping times for STOP 1, axis 3
4.30.9	Stopping distances and times, KR 120 R2900 extra C
4.30.9.1	Stopping distances and stopping times for STOP 0, axis 1 to axis 3
4.30.9.2	Stopping distances and stopping times for STOP 1, axis 1
4.30.9.3	Stopping distances and stopping times for STOP 1, axis 2
4.30.9.4	Stopping distances and stopping times for STOP 1, axis 3
4.30.10	Stopping distances and times, KR 90 R3100 extra
4.30.10.1	
4.30.10.2	
4.30.10.3	
4.30.10.4	
4.30.11	
4.30.11.1	
4.30.11.2	
4.30.11.3	
4.30.11.4	
5 Sa	afety
5.1 Ge	25
5.1.1	
5.1.1 5.1.2	Liability
	Intended use of the industrial robot
5.1.3	EC declaration of conformity and declaration of incorporation

5.1.4	Terms used	253				
5.2	Personnel					
5.3	Workspace, safety zone and danger zone					
5.4	Overview of protective equipment					
5.4.1	Mechanical end stops	255				
5.4.2	Mechanical axis range limitation (optional)	255				
5.4.3	Axis range monitoring (optional)	255				
5.4.4	Options for moving the manipulator without drive energy	256				
5.4.5	Labeling on the industrial robot	256				
5.5	Safety measures	257				
5.5.1	General safety measures	257				
5.5.2	Transportation	258				
5.5.3	Start-up and recommissioning	258				
5.5.4	Manual mode	259				
5.5.5	Automatic mode	260				
5.5.6	Maintenance and repair	260				
5.5.7	Decommissioning, storage and disposal	262				
5.6	Applied norms and regulations	262				
6	Planning	265				
6 6.1	Planning	265 265				
6.1	Information for planning	265				
6.1 6.2	Information for planning Mounting base with centering	265 265				
6.1 6.2 6.3	Information for planning Mounting base with centering Machine frame mounting	265 265 268				
6.1 6.2 6.3 6.4	Information for planning Mounting base with centering Machine frame mounting Connecting cables and interfaces	265 265 268 269				
6.1 6.2 6.3 6.4 7	Information for planning Mounting base with centering Machine frame mounting Connecting cables and interfaces Transportation	265 265 268 269 271				
6.1 6.2 6.3 6.4 7 7.1	Information for planning Mounting base with centering Machine frame mounting Connecting cables and interfaces Transportation Transporting the robot	265 265 268 269 271 271				
6.1 6.2 6.3 6.4 7 7.1 8	Information for planning Mounting base with centering Machine frame mounting Connecting cables and interfaces Transportation Transporting the robot Options	265 265 268 269 271 271 275				
 6.1 6.2 6.3 6.4 7 7.1 8 8.1 	Information for planning Mounting base with centering Machine frame mounting Connecting cables and interfaces Transportation Transporting the robot Options Mounting flange, adapter (optional)	265 265 268 269 271 271 275 275				
 6.1 6.2 6.3 6.4 7 7.1 8 8.1 8.2 	Information for planning Mounting base with centering Machine frame mounting Connecting cables and interfaces Transportation Transporting the robot Options Mounting flange, adapter (optional) Control cable for single axis (optional)	265 268 269 271 271 275 275 276 276				
 6.1 6.2 6.3 6.4 7 7.1 8 8.1 8.2 8.3 	Information for planning Mounting base with centering Machine frame mounting Connecting cables and interfaces Transportation Transporting the robot Options Mounting flange, adapter (optional) Control cable for single axis (optional) Release device (optional)	265 268 269 271 271 275 275 275				
 6.1 6.2 6.3 6.4 7 7.1 8 8.1 8.2 8.3 9 	Information for planning Mounting base with centering Machine frame mounting Connecting cables and interfaces Transportation Transporting the robot Options Mounting flange, adapter (optional) Control cable for single axis (optional) Release device (optional) KUKA Service	265 268 269 271 271 275 275 276 276 276 277				

1 Introduction

κιικα

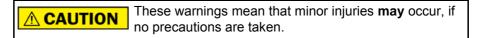
1 Introduction

1.1 Industrial robot documentation

The industrial robot documentation consists of the following parts:

- Documentation for the manipulator
- Documentation for the robot controller
- Operating and programming instructions for the System Software
- Instructions for options and accessories
- Parts catalog on storage medium

Each of these sets of instructions is a separate document.


1.2 Representation of warnings and notes

Safety

These warnings are relevant to safety and **must** be observed.

DANGER These warnings mean that it is certain or highly probable that death or severe injuries **will** occur, if no precautions are taken.

WARNING These warnings mean that death or severe injuries **may** occur, if no precautions are taken.

NOTICE These warnings mean that damage to property **may** occur, if no precautions are taken.

These warnings contain references to safety-relevant information or general safety measures.

These warnings do not refer to individual hazards or individual precautionary measures.

This warning draws attention to procedures which serve to prevent or remedy emergencies or malfunctions:

SAFETY INSTRUCTIONS Procedures marked with this warning **must** be followed exactly.

Notices

These notices serve to make your work easier or contain references to further information.

Tip to make your work easier or reference to further information.

κυκα

2 Purpose

2.1 Target group

This documentation is aimed at users with the following knowledge and skills:

- Advanced knowledge of mechanical engineering
- Advanced knowledge of electrical and electronic systems
- Knowledge of the robot controller system

For optimal use of our products, we recommend that our customers take part in a course of training at KUKA College. Information about the training program can be found at www.kuka.com or can be obtained directly from our subsidiaries.

2.2 Intended use

Use

The industrial robot is intended for handling tools and fixtures or for processing and transferring components or products. Use is only permitted under the specified environmental conditions.

Misuse

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:

- Transportation of persons and animals
- Use as a climbing aid
- Use outside the permissible operating parameters
- Use in potentially explosive environments
- Operation in underground mining

NOTICE Changing the structure of the manipulator, e.g. by drilling holes, etc., can result in damage to the components. This is considered improper use and leads to loss of guarantee and liability entitlements.

NOTICE Deviations from the operating conditions specified in the technical data or the use of special functions or applications can lead to premature wear. KUKA Roboter GmbH must be consulted.

The robot system is an integral part of a complete system and may only be operated in a CE-compliant system.

3 Product description

3.1 Overview of the robot system

A robot system (>>> Fig. 3-1) comprises all the assemblies of an industrial robot, including the manipulator (mechanical system and electrical installations), control cabinet, connecting cables, end effector (tool) and other equipment. The KR QUANTEC extra product family comprises the variants:

- KR 210 R2700 extra
- KR 180 R2500 extra
- KR 150 R2700 extra
- KR 120 R2900 extra
- KR 90 R3100 extra

With the exception of the KR 210 R2700 extra, the robots are available as both F-HP variants (foundry) and C variants (ceiling-mounted).

An industrial robot of this type comprises the following components:

- Manipulator
- Robot controller
- Connecting cables
- KCP teach pendant (KUKA smartPAD)
- Software
- Options, accessories

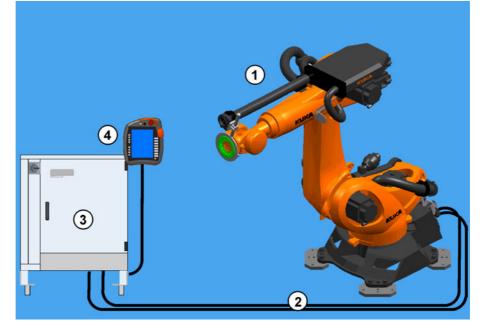
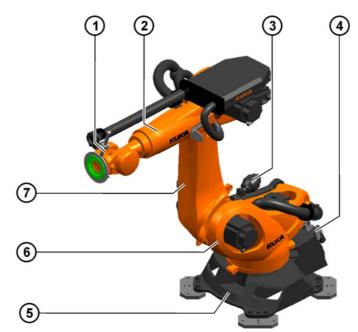


Fig. 3-1: Example of a robot system

- 1 Manipulator
- 2 Connecting cables
- 3 Robot controller
- 4 KUKA smartPAD teach pendant


3.2 Description of the manipulator

Overview

The manipulators (= robot arm and electrical installations) (>>> Fig. 3-2) of the variants are designed as 6-axis jointed-arm kinematic systems. They consist of the following principal components:

κυκα

- In-line wrist
- Arm
- Link arm
- Rotating column
- Base frame
- Counterbalancing system
- **Electrical installations**

Fig. 3-2: Main assemblies of the manipulator

1	In-line wrist
2	Arm

3

- Base frame 5
- 6 Rotating column
- 7 Link arm Counterbalancing system
- 4 Electrical installations
- In-line wrist The robot is fitted with a 3-axis in-line wrist. The in-line wrist contains axes 4, 5 and 6. The motor of axis 6 is located directly on the wrist, inside the arm. It drives the wrist directly, while for axes 4 and 5 the drive comes from the rear of the arm via connecting shafts. For attaching end effectors (tools), the in-line wrist has a mounting flange. The mounting flange conforms, with minimal deviations, to DIN/ISO9409-1-A and meets the requirements of IP65.
- Arm The arm is the link between the in-line wrist and the link arm. It houses the motors of wrist axes 4 and 5. The arm is driven by the motor of axis 3. The maximum permissible swivel angle is mechanically limited by a stop for each direction, plus and minus. The associated buffers are attached to the arm. There is an interface on the arm with 4 holes for fastening supplementary loads.
- Link arm The link arm is the assembly located between the arm and the rotating column. It consists of the link arm body with the buffers for axis 2. In combination with the arm, there are three different lengths of link arm available to obtain the specified reach. There is an interface on the link arm with 4 holes for fastening supplementary loads.
- **Rotating column** The rotating column houses the motors of axes 1 and 2. The rotational motion of axis 1 is performed by the rotating column. This is screwed to the base

κυκα

frame via the gear unit of axis 1 and is driven by a motor in the rotating column. The link arm is also mounted in the rotating column.

- Base frame The base frame is the base of the robot. It is screwed to the mounting base. The flexible tube for the electrical installations is fastened in the base frame. Also located on the base frame is the interface for the motor and data cable and the energy supply system.
- Counterbalancing system The counterbalancing system is installed between the rotating column and the link arm and serves to minimize the moments generated about axis 2 when the robot is in motion and at rest. A closed, hydropneumatic system is used. The system consists of two accumulators, a hydraulic cylinder with associated hoses, a pressure gauge and a bursting disc as a safety element to protect against overload. The accumulators are classified below category I, fluid group 2, of the Pressure Equipment Directive.
- **Electrical installations** The electrical installations include all the motor and data cables for the motors of axes 1 to 6. All connections are implemented as connectors in order to enable the motors to be exchanged quickly and reliably. The electrical installations also include the RDC box and the multi-function housing (MFH). The RDC box is located in the rotating column. The MFH and the connector for the data cables are mounted on the robot base frame. The connecting cables from the robot controller are connected here by means of connectors. The electrical installations also include a protective circuit.
- **Options** The robot can be fitted and operated with various options, such as energy supply systems for axes 1 to 3, energy supply systems for axes 3 to 6, range limitation systems for A1 and A3, a mounting flange (adapter) or a control cable for single axis (>>> 8 "Options" Page 275). The options are described in separate documentation.

4 Technical data

4.1 Technical data, overview

The technical data for the individual robot types can be found in the following sections:

KR 210 R2700 extra Technical data (>>> 4.2 "Technical data, KR 210 R2700 extra" Page 22) Supplementary loads (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.3 "Stopping distances and times, KR 210 R2700 extra" Page 205) KR 180 R2500 extra Technical data (>>> 4.3 "Technical data, KR 180 R2500 extra" Page 29) Supplementary loads (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data (>>> 4.4 "Technical data KB 180 R2500 extra E" Page 36) 	Robot	Technical data
 Supplementary loads Supplementary loads >>> 4.27 "Supplementary load" Page 199) Plates and labels >>> 4.28 "Plates and labels" Page 200) Stopping distances and times >>> 4.30.3 "Stopping distances and times, KR 210 R2700 extra" Page 205) KR 180 R2500 extra Technical data >>> 4.3 "Technical data, KR 180 R2500 extra" Page 29) Supplementary loads >>> 4.27 "Supplementary load" Page 199) Plates and labels >>> 4.27 "Supplementary load" Page 199) Plates and labels >>> 4.28 "Plates and labels" Page 200) Stopping distances and times >>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data 	KR 210 R2700 extra	Technical data
(>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.3 "Stopping distances and times, KR 210 R2700 extra" Page 205) KR 180 R2500 extra Technical data (>>> 4.3 "Technical data, KR 180 R2500 extra" Page 29) Supplementary loads (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data		(>>> 4.2 "Technical data, KR 210 R2700 extra" Page 22)
 Plates and labels Plates and labels >>> 4.28 "Plates and labels" Page 200) Stopping distances and times >>> 4.30.3 "Stopping distances and times, KR 210 R2700 extra" Page 205) KR 180 R2500 extra Technical data >>> 4.3 "Technical data, KR 180 R2500 extra" Page 29) Supplementary loads >>> 4.27 "Supplementary load" Page 199) Plates and labels >>> 4.28 "Plates and labels" Page 200) Stopping distances and times >>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data Technical data Technical data Technical data Technical data Stopping distances and times Technical data Technical data		 Supplementary loads
(>>> 4.28 "Plates and labels" Page 200)Stopping distances and times(>>> 4.30.3 "Stopping distances and times, KR 210 R2700 extra" Page 205)KR 180 R2500 extraTechnical data (>>> 4.3 "Technical data, KR 180 R2500 extra" Page 29)Supplementary loads (>>> 4.27 "Supplementary load" Page 199)Plates and labels 		(>>> 4.27 "Supplementary load" Page 199)
 Stopping distances and times Stopping distances and times >>> 4.30.3 "Stopping distances and times, KR 210 R2700 extra" Page 205) KR 180 R2500 extra Technical data >>> 4.3 "Technical data, KR 180 R2500 extra" Page 29) Supplementary loads >>> 4.27 "Supplementary load" Page 199) Plates and labels >>> 4.28 "Plates and labels" Page 200) Stopping distances and times >>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data 		 Plates and labels
(>>> 4.30.3 "Stopping distances and times, KR 210 R2700 extra" Page 205)KR 180 R2500 extra• Technical data (>>> 4.3 "Technical data, KR 180 R2500 extra" Page 29)• Supplementary loads (>>> 4.27 "Supplementary load" Page 199)• Plates and labels (>>> 4.28 "Plates and labels" Page 200)• Stopping distances and times (>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210)KR 180 R2500 extra• Technical data		(>>> 4.28 "Plates and labels" Page 200)
Page 205) KR 180 R2500 extra ■ Technical data (>>> 4.3 "Technical data, KR 180 R2500 extra" Page 29) ■ Supplementary loads (>>> 4.27 "Supplementary load" Page 199) ■ Plates and labels (>>> 4.28 "Plates and labels" Page 200) ■ Stopping distances and times (>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra ■ Technical data		 Stopping distances and times
 (>>> 4.3 "Technical data, KR 180 R2500 extra" Page 29) Supplementary loads (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data 		
 Supplementary loads Supplementary loads >>> 4.27 "Supplementary load" Page 199) Plates and labels >>> 4.28 "Plates and labels" Page 200) Stopping distances and times >>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data 	KR 180 R2500 extra	Technical data
 (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data 		(>>> 4.3 "Technical data, KR 180 R2500 extra" Page 29)
 Plates and labels Plates and labels >>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data 		 Supplementary loads
(>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data		(>>> 4.27 "Supplementary load" Page 199)
 Stopping distances and times (>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data 		Plates and labels
(>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210) KR 180 R2500 extra Technical data		(>>> 4.28 "Plates and labels" Page 200)
Page 210) KR 180 R2500 extra Technical data		 Stopping distances and times
KR 180 R2500 extra Technical data		
(>>> 4.4 "Lechnical data, KR 180 R2500 evtra F" Page 36)		
	F	(>>> 4.4 "Technical data, KR 180 R2500 extra F" Page 36)
 Supplementary loads 		
(>>> 4.27 "Supplementary load" Page 199)		
 Plates and labels 		
(>>> 4.28 "Plates and labels" Page 200)		
 Stopping distances and times 		
(>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210)		
KR 180 R2500 extra Technical data		
F-HP (>>> 4.5 "Technical data, KR 180 R2500 extra F-HP" Page 43)	F-HP	(>>> 4.5 "Technical data, KR 180 R2500 extra F-HP" Page 43)
 Supplementary loads 		
(>>> 4.27 "Supplementary load" Page 199)		(>>> 4.27 "Supplementary load" Page 199)
Plates and labels		
(>>> 4.28 "Plates and labels" Page 200)		(>>> 4.28 "Plates and labels" Page 200)
 Stopping distances and times 		
(>>> 4.30.4 "Stopping distances and times, KR 180 R2500 extra" Page 210)		

- ·					-	
KR Q	UAN	IEC (extra			

Robot	Technical data				
KR 180 R2500 extra	Technical data				
С	(>>> 4.6 "Technical data, KR 180 R2500 extra C" Page 50)				
	 Supplementary loads 				
	(>>> 4.27 "Supplementary load" Page 199)				
	 Plates and labels 				
	(>>> 4.28 "Plates and labels" Page 200)				
	 Stopping distances and times 				
	(>>> 4.30.5 "Stopping distances and times, KR 180 R2500 extra C" Page 215)				
KR 180 R2500 extra	Technical data				
C-F	(>>> 4.7 "Technical data, KR 180 R2500 extra C-F" Page 57)				
	 Supplementary loads 				
	(>>> 4.27 "Supplementary load" Page 199)				
	Plates and labels				
	(>>> 4.28 "Plates and labels" Page 200)				
	 Stopping distances and times 				
	(>>> 4.30.5 "Stopping distances and times, KR 180 R2500 extra C" Page 215)				
KR 180 R2500 extra	Technical data				
C-F-HP	I eclifical data (>>> 4.8 "Technical data, KR 180 R2500 extra C-F-HP" Page 64)				
	 Supplementary loads 				
	 Supplementary loads (>>> 4.27 "Supplementary load" Page 199) 				
	 Plates and labels 				
	 Plates and labels (>>> 4.28 "Plates and labels" Page 200) 				
	 Stopping distances and times 				
	Stopping distances and times (>>> 4.30.5 "Stopping distances and times, KR 180 R2500 extra C"				
	Page 215)				
KR 150 R2700 extra	Technical data				
	(>>> 4.9 "Technical data, KR 150 R2700 extra" Page 71)				
	 Supplementary loads 				
	(>>> 4.27 "Supplementary load" Page 199)				
	 Plates and labels 				
	(>>> 4.28 "Plates and labels" Page 200)				
	 Stopping distances and times 				
	(>>> 4.30.6 "Stopping distances and times, KR 150 R2700 extra"				
	Page 220)				
KR 150 R2700 extra F	Technical data				
1	(>>> 4.10 "Technical data, KR 150 R2700 extra F" Page 78)				
	 Supplementary loads (a.a., 4.07 "Oragle sectors load" Date (100) 				
	(>>> 4.27 "Supplementary load" Page 199)				
	 Plates and labels (bb) 4.00 "Eletes and labels" Page 2000 				
	(>>> 4.28 "Plates and labels" Page 200)				
	Stopping distances and times				
	(>>> 4.30.6 "Stopping distances and times, KR 150 R2700 extra" Page 220)				

4 Technical data KUKA

Robot	Technical data
KR 150 R2700 extra	Technical data
F-HP	(>>> 4.11 "Technical data, KR 150 R2700 extra F-HP" Page 85)
	 Supplementary loads
	(>>> 4.27 "Supplementary load" Page 199)
	 Plates and labels
	(>>> 4.28 "Plates and labels" Page 200)
	 Stopping distances and times
	(>>> 4.30.6 "Stopping distances and times, KR 150 R2700 extra"
	Page 220)
KR 150 R2700 extra	Technical data
С	(>>> 4.12 "Technical data, KR 150 R2700 extra C" Page 92)
	 Supplementary loads
	(>>> 4.27 "Supplementary load" Page 199)
	Plates and labels
	(>>> 4.28 "Plates and labels" Page 200)
	 Stopping distances and times
	(>>> 4.30.7 "Stopping distances and times, KR 150 R2700 extra C" Page 225)
KR 150 R2700 extra	Technical data
C-F	(>>> 4.13 "Technical data, KR 150 R2700 extra C-F" Page 99)
	 Supplementary loads
	(>>> 4.27 "Supplementary load" Page 199)
	Plates and labels
	(>>> 4.28 "Plates and labels" Page 200)
	 Stopping distances and times
	(>>> 4.30.7 "Stopping distances and times, KR 150 R2700 extra C" Page 225)
KR 150 R2700 extra	Technical data
C-F-HP	(>>> 4.14 "Technical data, KR 150 R2700 extra C-F-HP" Page 106)
	 Supplementary loads
	(>>> 4.27 "Supplementary load" Page 199)
	Plates and labels
	(>>> 4.28 "Plates and labels" Page 200)
	 Stopping distances and times
	(>>> 4.30.7 "Stopping distances and times, KR 150 R2700 extra C" Page 225)
KR 120 R2900 extra	Technical data
	(>>> 4.15 "Technical data, KR 120 R2900 extra" Page 113)
	 Supplementary loads
	(>>> 4.27 "Supplementary load" Page 199)
	Plates and labels
	(>>> 4.28 "Plates and labels" Page 200)
	 Stopping distances and times
	(>>> 4.30.8 "Stopping distances and times, KR 120 R2900 extra" Page 230)

Robot	Technical data
KR 120 R2900 extra F	 Technical data (>>> 4.16 "Technical data, KR 180 R2500 extra F" Page 120) Supplementary loads (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.8 "Stopping distances and times, KR 120 R2900 extra" Page 230)
KR 120 R2900 extra F-HP	 Technical data (>>> 4.17 "Technical data, KR 120 R2900 extra F-HP" Page 127) Supplementary loads (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.8 "Stopping distances and times, KR 120 R2900 extra" Page 230)
KR 120 R2900 extra C	 Technical data (>>> 4.18 "Technical data, KR 120 R2900 extra C" Page 134) Supplementary loads (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.9 "Stopping distances and times, KR 120 R2900 extra C" Page 235)
KR 120 R2900 extra C-F	 Technical data (>>> 4.19 "Technical data, KR 120 R2900 extra C-F" Page 141) Supplementary loads (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.9 "Stopping distances and times, KR 120 R2900 extra C" Page 235)
KR 120 R2900 extra C-F-HP	 Technical data (>>> 4.20 "Technical data, KR 120 R2900 extra C-F-HP" Page 148) Supplementary loads (>>> 4.27 "Supplementary load" Page 199) Plates and labels (>>> 4.28 "Plates and labels" Page 200) Stopping distances and times (>>> 4.30.9 "Stopping distances and times, KR 120 R2900 extra C" Page 235)

4 Technical data KUKA

Robot	Technical data
KR 90 R3100 extra	Technical data
	(>>> 4.21 "Technical data, KR 90 R3100 extra" Page 155)
	 Supplementary loads
	(>>> 4.27 "Supplementary load" Page 199)
	 Plates and labels
	(>>> 4.28 "Plates and labels" Page 200)
	 Stopping distances and times
	(>>> 4.30.10 "Stopping distances and times, KR 90 R3100 extra" Page 240)
KR 90 R3100 extra F	Technical data
	(>>> 4.22 "Technical data, KR 90 R3100 extra F" Page 162)
	 Supplementary loads
	(>>> 4.27 "Supplementary load" Page 199)
	 Plates and labels
	(>>> 4.28 "Plates and labels" Page 200)
	 Stopping distances and times
	(>>> 4.30.10 "Stopping distances and times, KR 90 R3100 extra"
	Page 240)
KR 90 R3100 extra F-	Technical data
HP	(>>> 4.23 "Technical data, KR 90 R3100 extra F-HP" Page 169)
	 Supplementary loads
	(>>> 4.27 "Supplementary load" Page 199)
	Plates and labels
	(>>> 4.28 "Plates and labels" Page 200)
	 Stopping distances and times
	(>>> 4.30.10 "Stopping distances and times, KR 90 R3100 extra" Page 240)
KR 90 R3100 extra C	Technical data
	(>>> 4.24 "Technical data, KR 90 R3100 extra C" Page 176)
	 Supplementary loads
	(>>> 4.27 "Supplementary load" Page 199)
	 Plates and labels
	(>>> 4.28 "Plates and labels" Page 200)
	 Stopping distances and times
	(>>> 4.30.11 "Stopping distances and times, KR 90 R3100 extra C" Page 245)

Robot	Technical data	
KR 90 R3100 extra C-	Technical data	
F	(>>> 4.25 "Technical data, KR 90 R3100 extra C-F" Page 183)	
	 Supplementary loads 	
	(>>> 4.27 "Supplementary load" Page 199)	
	Plates and labels	
	(>>> 4.28 "Plates and labels" Page 200)	
	 Stopping distances and times 	
	(>>> 4.30.11 "Stopping distances and times, KR 90 R3100 extra C" Page 245)	
KR 90 R3100 extra C-	Technical data	
F-HP	(>>> 4.26 "Technical data, KR 90 R3100 extra C-F-HP" Page 191)	
	 Supplementary loads 	
	(>>> 4.27 "Supplementary load" Page 199)	
	 Plates and labels 	
	(>>> 4.28 "Plates and labels" Page 200)	
	 Stopping distances and times 	
	(>>> 4.30.11 "Stopping distances and times, KR 90 R3100 extra C" Page 245)	

Technical data, KR 210 R2700 extra 4.2

4.2.1 Basic data, KR 210 R2700 extra

Basic data

	KR 210 R2700 extra	
Number of axes	6	
Number of controlled axes	6	
Volume of working envelope	55 m³	
Pose repeatability (ISO 9283)	± 0.06 mm	
Weight	approx. 1068 kg	
Rated payload	210 kg	
Maximum reach	2696 mm	
Protection rating	IP65	
Protection rating, in-line wrist	IP65	
Sound level	< 75 dB (A)	
Mounting position	Floor	
Footprint	830 mm x 830 mm	
Permissible angle of inclination	≤ 5 °	
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567	
Controller	KR C4	
Transformation name	KR C4: KR210R2700 EXTRA C4 FLR	
Hollow shaft diameter		
A1	139 mm (partially occupied by motor cables)	

4 Technical data KUKA

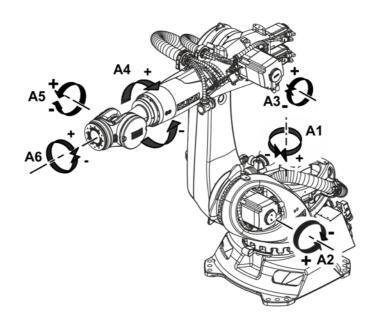
Ambient conditions

Humidity class (EN 60204)	-
Classification of environmental con- ditions (EN 60721-3-3)	3K3
Ambient temperature	
During operation	10 °C to 55 °C (283 K to 328 K)
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	
Minimum bending radius	5x D	


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.2.2 Axis data, KR 210 R2700 extra

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	112 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-1).

Fig. 4-1: Direction of rotation of the axes

Mastering	Mastering position	Mastering position	
position	A1	-20 °	
	A2	-120 °	
	A3	110 °	
	A4	0 °	
	A5	0 °	
	A6	0 °	

Working envelope

The following diagrams (>>> Fig. 4-2) and (>>> Fig. 4-3) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

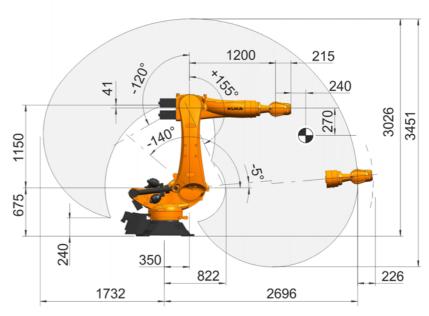
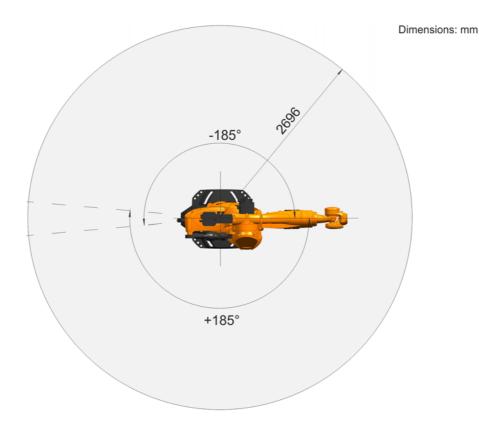



Fig. 4-2: KR 210 R2700 extra, working envelope, side view

4 Technical data

KUKA

Fig. 4-3: KR 210 R2700 extra, working envelope, top view

4.2.3 Payloads, KR 210 R2700 extra

Payloads

Rated payload	210 kg
Rated mass moment of inertia	105 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gr	avity
Lxy	270 mm
Lz	240 mm
	1

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

KR QUANTEC extra

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

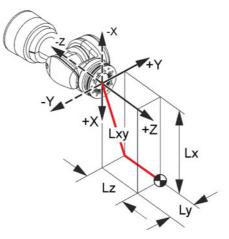


Fig. 4-4: Load center of gravity

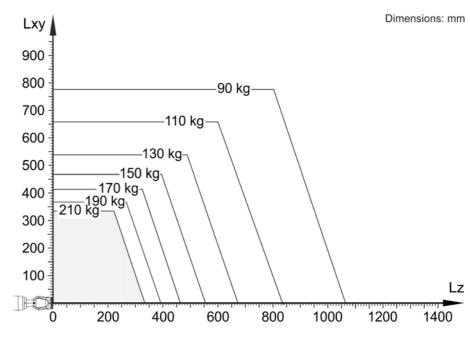


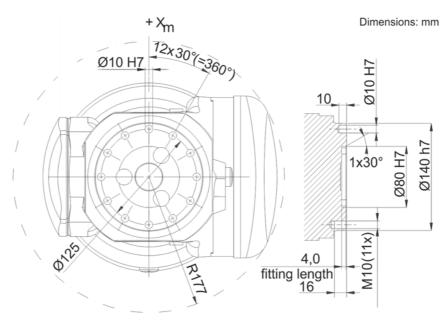
Fig. 4-5: KR QUANTEC extra payload diagram, payload 210 kg

This loading curve corresponds to the maximum load ca-NOTICE pacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the

ne wrist	In-line wrist type	ZH 150/180/210
	Mounting flange	see drawing

load data to be entered in the robot controller!

In-lin

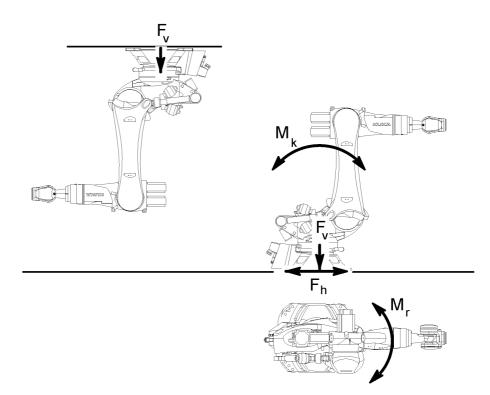

4 Technical data

KUKA

Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-6) The symbol X_m indicates the position of the locating element (bushing) in the zero position.


Fig. 4-6: Mounting flange D=125

NOTICE An optional adapter is available for the mounting flange. Further information about this option may be found in the chapter "Options" (>>> 8 "Options" Page 275).

4.2.4 Loads acting on the foundation, KR 210 R2700 extra

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-7: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v .

4.3 Technical data, KR 180 R2500 extra

4.3.1 Basic data, KR 180 R2500 extra

Basic data

	KR 180 R2500 extra
Number of axes	6
Number of controlled axes	6
Volume of working envelope	41 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1059 kg
Rated payload	180 kg
Maximum reach	2496 mm
Protection rating	IP65
Protection rating, in-line wrist	IP65
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR180R2500 EXTRA C4 FLR
Hollow shaft diameter	
A1	139 mm (partially occupied by motor cables)

Ambient conditions

condi-	Humidity class (EN 60204)	-
	Classification of environmental con-	3K3
	ditions (EN 60721-3-3)	
	Ambient temperature	
	During operation	10 °C to 55 °C (283 K to 328 K)
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

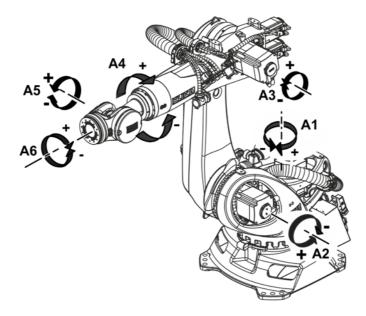
Cable designation	Connector designa- tion	Interface with robot
	robot controller - ro- bot	
Motor cable	X20 - X30	Harting connectors at both ends

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bending radius	5x D

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.3.2 Axis data, KR 180 R2500 extra

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-8).

4 Technical data KUKA

Fig. 4-8: Direction of rotation of the axes

Mastering position

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-9) and (>>> Fig. 4-10) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

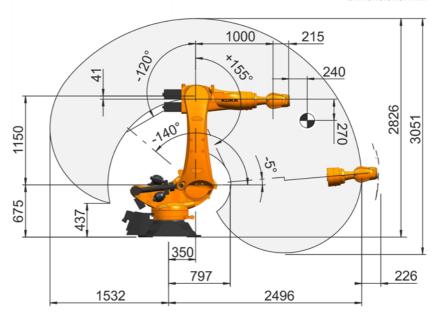
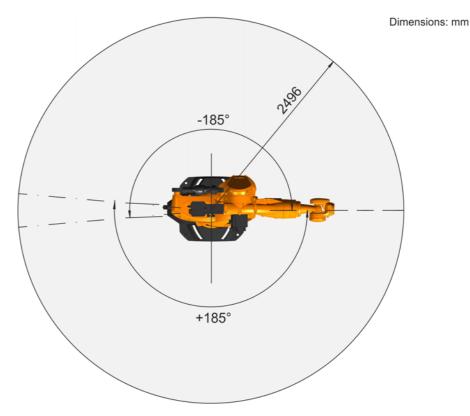



Fig. 4-9: KR 180 R2500 extra, working envelope, side view

4.3.3 Payloads, KR 180 R2500 extra

Payloads

Rated payload	180 kg
Rated mass moment of inertia	90 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

κυκα

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

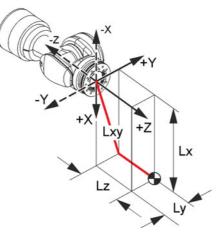
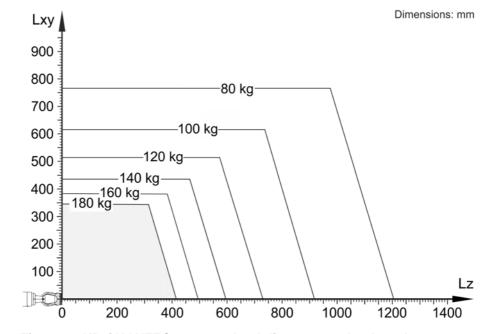
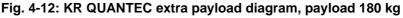




Fig. 4-11: Load center of gravity

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

In-line wrist

In-line	wrist type	ZH 150/180/210
Mount	ing flange	see drawing

ca

Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-13) The symbol X_m indicates the position of the locating element (bushing) in the zero position.

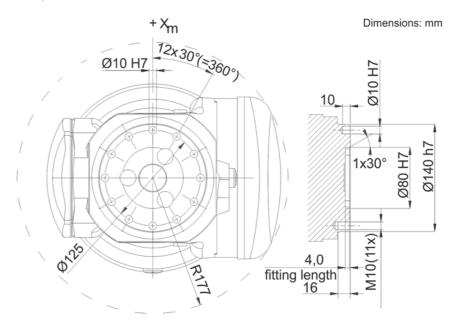
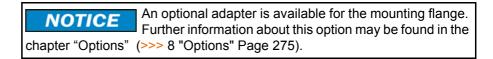
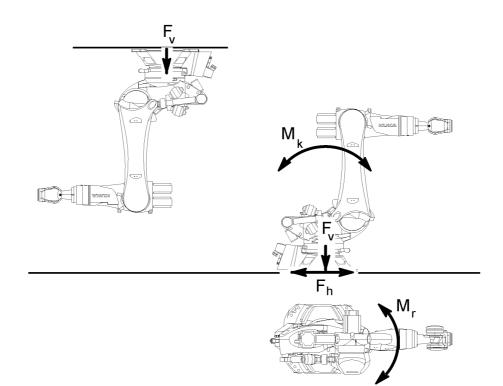




Fig. 4-13: Mounting flange D=125

4.3.4 Loads acting on the foundation, KR 180 R2500 extra

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-14: Loads acting on the mounting base

/ertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.4 Technical data, KR 180 R2500 extra F

4.4.1 Basic data, KR 180 R2500 extra F

Basic data

	KR 180 R2500 extra F
Number of axes	6
Number of controlled axes	6
Volume of working envelope	41 m³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1059 kg
Rated payload	180 kg
Maximum reach	2496 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR180R2500 EXTRA C4 FLR

Hollow shaft diameter

A1	139 mm (partially occupied by
	motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

4 Technical data KUKA

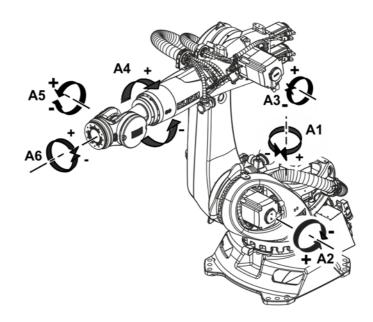
Ambient conditions

Humidity class (EN 60204)	-	
Classification of environmental con- ditions (EN 60721-3-3)	3K3	
Ambient temperature		
During operation	10 °C to 55 °C (283 K to 328 K)	
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	
Minimum bending radius	5x D	


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.4.2 Axis data, KR 180 R2500 extra F

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-15).

Fig. 4-15: Direction of rotation of the axes

Mastering	Mastering position	
position	A1	-20 °
	A2	-120 °
	A3	110 °
	A4	0 °
	A5	0 °
	A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-16) and (>>> Fig. 4-17) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

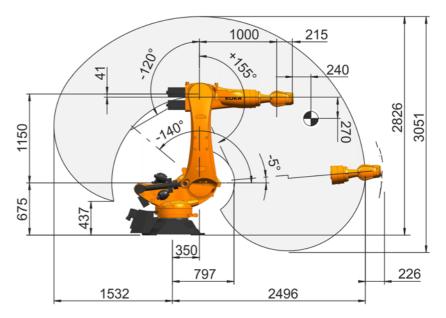
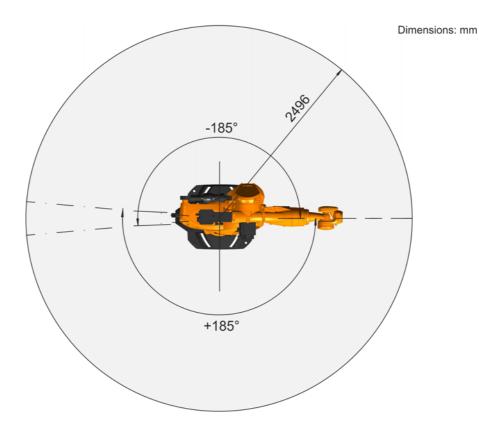
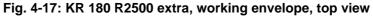




Fig. 4-16: KR 180 R2500 extra, working envelope, side view

4 Technical data

KUKA

4.4.3 Payloads, KR 180 R2500 extra F

Rated payload	180 kg
Rated mass moment of inertia	90 kgm ²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	-
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	-
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	-
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Payloads

KR QUANTEC extra

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

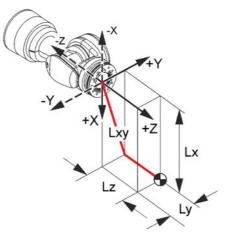


Fig. 4-18: Load center of gravity

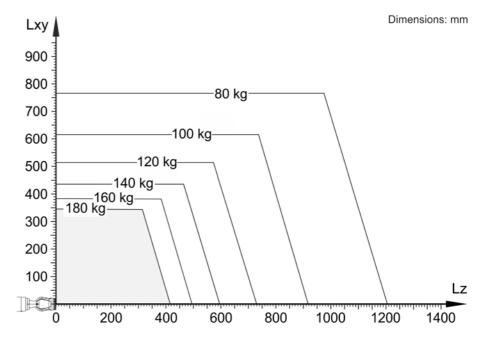
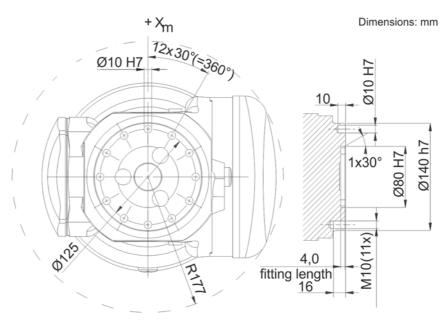


Fig. 4-19: KR QUANTEC extra payload diagram, payload 180 kg

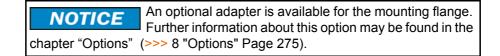
NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the

load data to be entered in the robot controller!

In-line wrist	In-line wrist type	ZH 150/180/210 F
	Mounting flange	see drawing

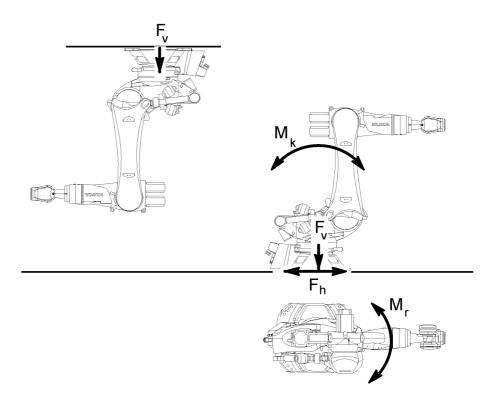

4 Technical data

KUKA


Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-20) The symbol X_m indicates the position of the locating element (bushing) in the zero position.


Fig. 4-20: Mounting flange D=125

4.4.4 Loads acting on the foundation, KR 180 R2500 extra F

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-21: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.5 Technical data, KR 180 R2500 extra F-HP

4.5.1 Basic data, KR 180 R2500 extra F-HP

Basic data

	KR 180 R2500 extra F-HP
Number of axes	6
Number of controlled axes	6
Volume of working envelope	41 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1059 kg
Rated payload	180 kg
Maximum reach	2496 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR180R2500 EXTRA HP C4 FLR
Hollow shaft diameter	
A1	139 mm (partially occupied by

Hollow shaft diameter	
A1	139 mm (partially occupied by motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

KR QUANTEC extra

Ambient condi- tions	Humidity class (EN 60204)	-	
	Classification of environmental con- ditions (EN 60721-3-3)	3K3	
	Ambient temperature		
	During operation	10 °C to 55 °C (283 K to 328 K)	
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	
		·	

For operation at low temperatures, it may be necessary to warm up the robot.

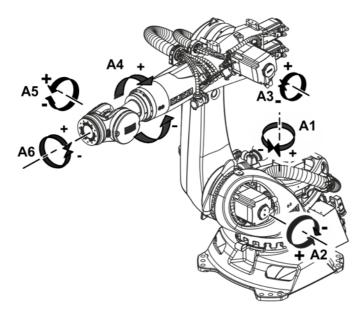
Connecting cables

ca	bl	es	

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Oakla law oth a		
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m,	50 m

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.5.2 Axis data, KR 180 R2500 extra F-HP

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-22).

4 Technical data KUKA

Fig. 4-22: Direction of rotation of the axes

Mastering position

Mastering position		
A1	-20 °	
A2	-120 °	
A3	110 °	
A4	0 °	
A5	0 °	
A6	0 °	

Working envelope

The following diagrams (>>> Fig. 4-23) and (>>> Fig. 4-24) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

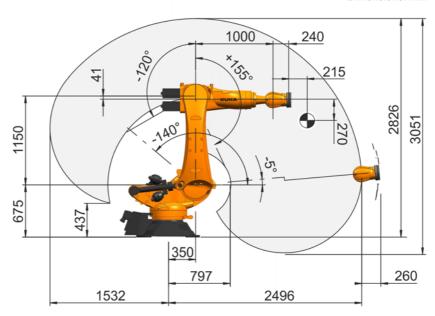
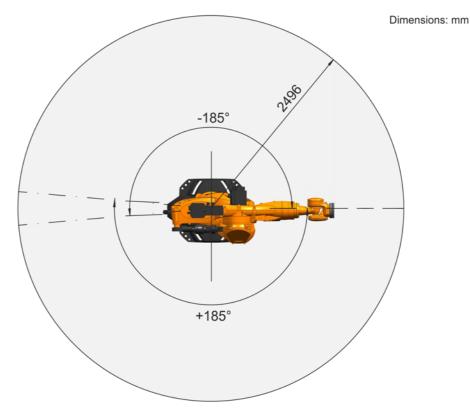



Fig. 4-23: KR 180 R2500 extra F-HP, working envelope, side view

4.5.3 Payloads, KR 180 R2500 extra F-HP

Payloads

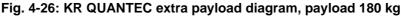
T	
Rated payload	180 kg
Rated mass moment of inertia	90 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gra	avity
Lxy	270 mm
Lz	240 mm

Exceeding the payloads and supplementary loads will re-NOTICE duce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

κυκα

Load center of gravity


Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

Fig. 4-25: Load center of gravity

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

In-line wrist

In-line wrist type	ZH 150/180/210 F-HP
Mounting flange	see drawing

KR QUANTEC extra

Mounting flange

Screw grade	A4-80	
Screw size	M10	
Number of fastening screws	23	
Clamping length	1.5 x nominal diameter	
Depth of engagement	min. 12 mm, max. 16 mm	
Locating element	10 H7	

The mounting flange is depicted with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

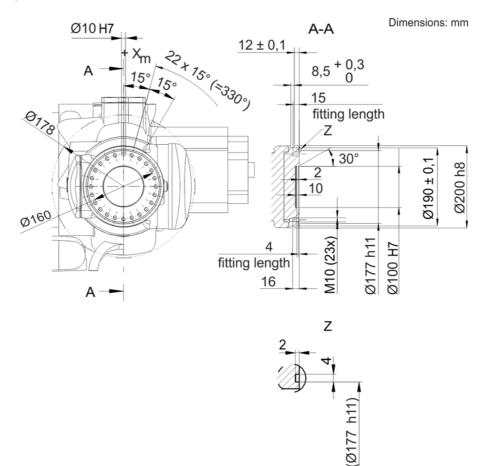


Fig. 4-27: Mounting flange D=160 for F-HP in-line wrist

4.5.4 Loads acting on the foundation, KR 180 R2500 extra F-HP

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-28: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.6 Technical data, KR 180 R2500 extra C

4.6.1 Basic data, KR 180 R2500 extra C

Basic data

	KR 180 R2500 extra C
Number of axes	6
Number of controlled axes	6
Volume of working envelope	41 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1059 kg
Rated payload	180 kg
Maximum reach	2495 mm
Protection rating	IP65
Protection rating, in-line wrist	IP65
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR180R2500 EXTRA C4 CLG
Hollow shaft diameter	
A1	139 mm (partially occupied by motor cables)

Ambient condi-	Humidity class (EN 60204)	-
tions	Classification of environmental con- ditions (EN 60721-3-3)	3K3
	Ambient temperature	
	During a second in a	

During operation10 °C to 55 °C (283 K to 328 K)During storage/transportation-40 °C to 60 °C (233 K to 333 K)

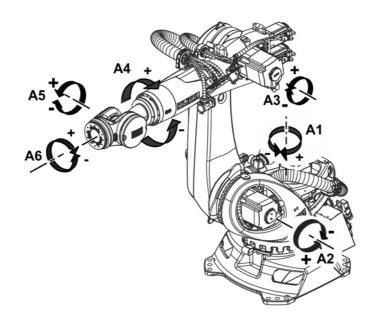
For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bending radius	5x D


For detailed specifications of the connecting cables, see "Description of the connecting cables".

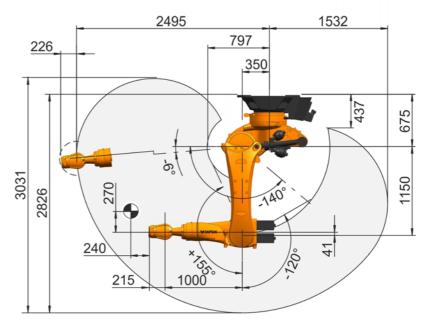
4.6.2 Axis data, KR 180 R2500 extra C

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -6 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-29).

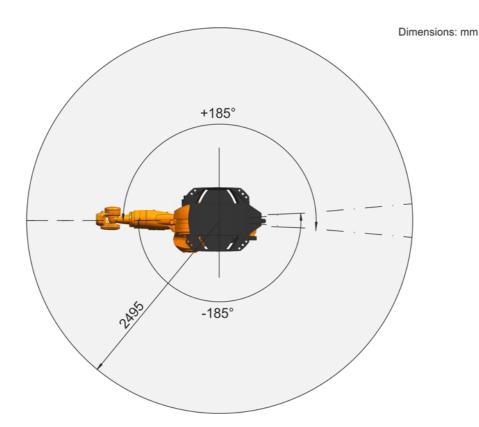
Fig. 4-29: Direction of rotation of the axes


Mastering position		Mastering position	Mastering	
	-20 °	A1	position	
	-120 °	A2		
	110 °	A3		
	0 °	A4		
	0 °	A5		
	0 °	A6		
	0 °	A5		

Working envelope

The following diagrams (>>> Fig. 4-30) and (>>> Fig. 4-31) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.


Dimensions: mm

4 Technical data

KUKA

4.6.3 Payloads, KR 180 R2500 extra C

Rated payload	180 kg
Reduced payload	-
Rated mass moment of inertia	90 kgm ²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Payloads

KR QUANTEC extra

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

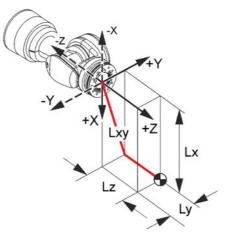


Fig. 4-32: Load center of gravity

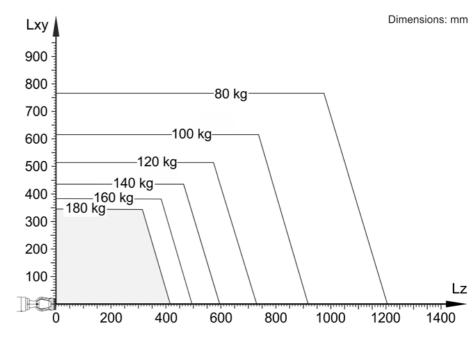


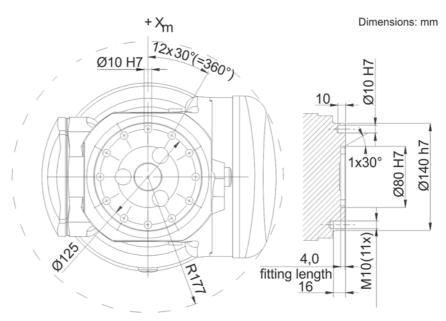
Fig. 4-33: KR QUANTEC extra payload diagram, payload 180 kg

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the

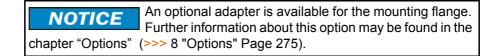
load data to be entered in the robot controller!

In-line wrist	In-line wrist type	ZH 150/180/210
	Mounting flange	see drawing

Issued: 01.09.2016 Version: Spez KR QUANTEC extra V8

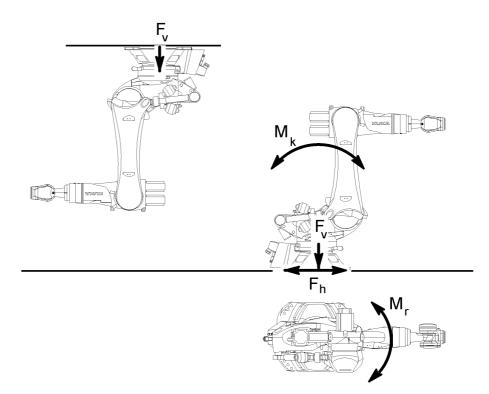

4 Technical data

KUKA


Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-34) The symbol X_m indicates the position of the locating element (bushing) in the zero position.


Fig. 4-34: Mounting flange D=125

4.6.4 Loads acting on the foundation, KR 180 R2500 extra C

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-35: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.7 Technical data, KR 180 R2500 extra C-F

4.7.1 Basic data, KR 180 R2500 extra C-F

Basic data

	KR 180 R2500 extra C-F
Number of axes	6
Number of controlled axes	6
Volume of working envelope	41 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1059 kg
Rated payload	180 kg
Maximum reach	2495 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR180R2500 EXTRA C4 CLG
Hollow shaft diameter	
A1	139 mm (partially occupied by

Hollow shall diameter	
A1	139 mm (partially occupied by motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%	
Compressed air	Free of oil and water	
	Class 4 in accordance with ISO 8573-1	
Compressed air sup- ply line	Air line in the cable set	
Air consumption	0.1 m ³ /h	
Air line connection	Push-in fitting for hose, 6 mm	
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)	
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)	
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)	
Thermal loading	10 s/min at 353 K (180 °C)	
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.	
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.	
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.	
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.	

KR QUANTEC extra

Ambient condi- tions	Humidity class (EN 60204)	-	
	Classification of environmental con- ditions (EN 60721-3-3)	3K3	
	Ambient temperature		
	During operation	10 °C to 55 °C (283 K to 328 K)	
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	
		·	

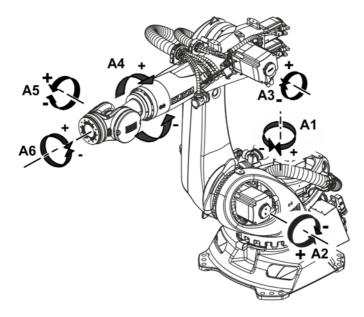
For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.7.2 Axis data, KR 180 R2500 extra C-F

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -6 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-36).

4 Technical data KUKA

Fig. 4-36: Direction of rotation of the axes

Mastering position

Mastering position		
A1	-20 °	
A2	-120 °	
A3	110 °	
A4	0 °	
A5	0 °	
A6	0 °	

Working envelope

The following diagrams (>>> Fig. 4-37) and (>>> Fig. 4-38) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

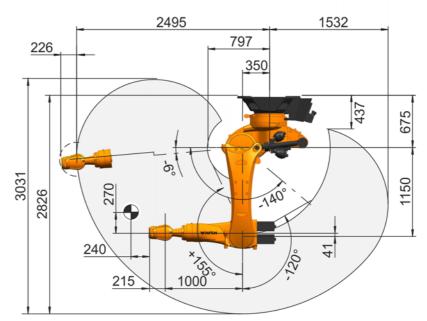
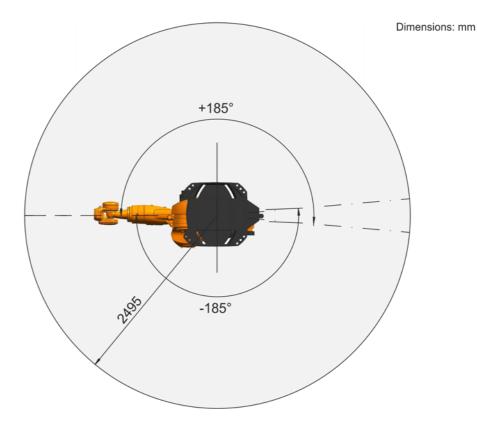



Fig. 4-37: KR 180 R2500 extra C, working envelope, side view

4.7.3 Payloads, KR 180 R2500 extra C-F

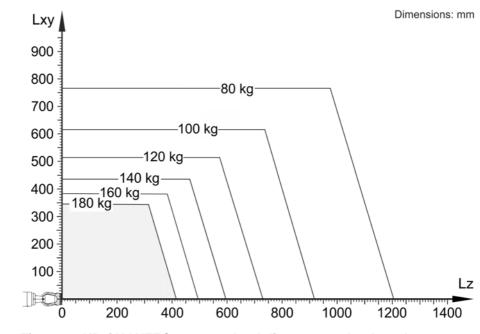
Payloads

Rated payload	180 kg
Reduced payload	-
Rated mass moment of inertia	90 kgm ²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	-
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	-
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	-
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

κυκα


Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

Fig. 4-39: Load center of gravity

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

In-line wrist

In-line wrist type	ZH 150/180/210 F
Mounting flange	see drawing

Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-41) The symbol X_m indicates the position of the locating element (bushing) in the zero position.

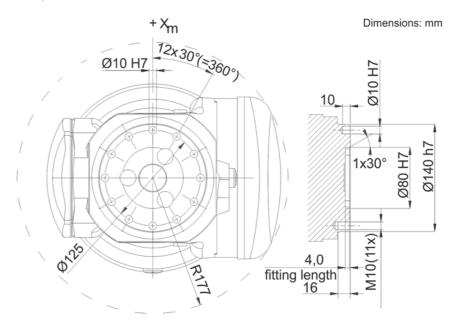
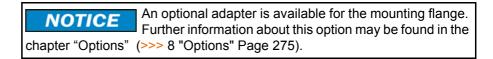
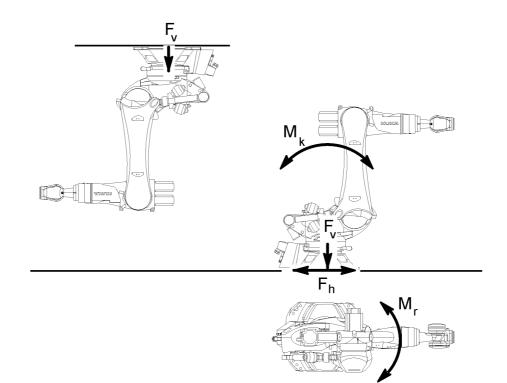




Fig. 4-41: Mounting flange D=125

4.7.4 Loads acting on the foundation, KR 180 R2500 extra C-F

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-42: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.8 Technical data, KR 180 R2500 extra C-F-HP

4.8.1 Basic data, KR 180 R2500 extra C-F-HP

Basic data

	KR 180 R2500 extra C-F-HP
Number of axes	6
Number of controlled axes	6
Volume of working envelope	41 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1059 kg
Rated payload	180 kg
Maximum reach	2495 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR180R2500 EXTRA HP C4 CLG

Hollow shaft diameter

A1	139 mm (partially occupied by
	motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

4 Technical data KUKA

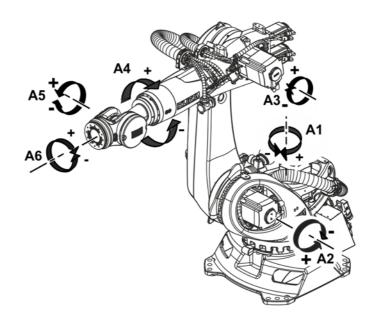
Ambient conditions

Humidity class (EN 60204)	-	
Classification of environmental con- ditions (EN 60721-3-3)	3K3	
Ambient temperature		
During operation	10 °C to 55 °C (283 K to 328 K)	
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	
Minimum bending radius	5x D	


For detailed specifications of the connecting cables, see "Description of the connecting cables".

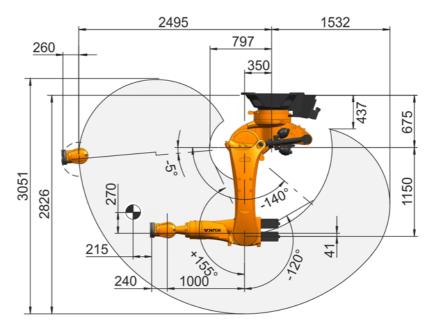
4.8.2 Axis data, KR 180 R2500 extra C-F-HP

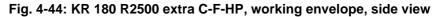
Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -6 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-43).

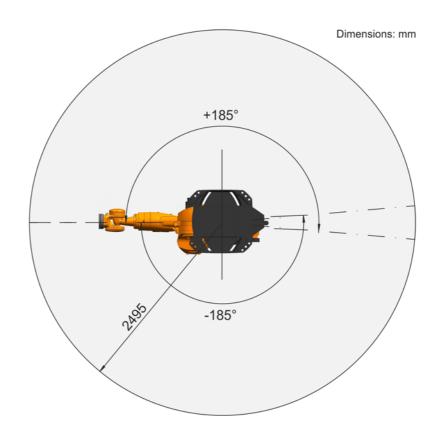
Fig. 4-43: Direction of rotation of the axes

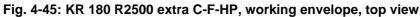

Mastering positionpositionA1-20°A2-120°A3110°A40°A50°A6


Working envelope

The following diagrams (>>> Fig. 4-44) and (>>> Fig. 4-45) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.


Dimensions: mm



4 Technical data

Κυκα

4.8.3 Payloads, KR 180 R2500 extra C-F-HP

Rated payload	180 kg
Reduced payload	-
Rated mass moment of inertia	90 kgm ²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Payloads

Κυκα

KR QUANTEC extra

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

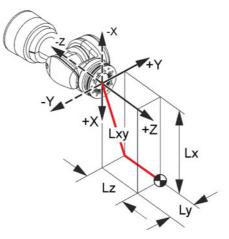


Fig. 4-46: Load center of gravity

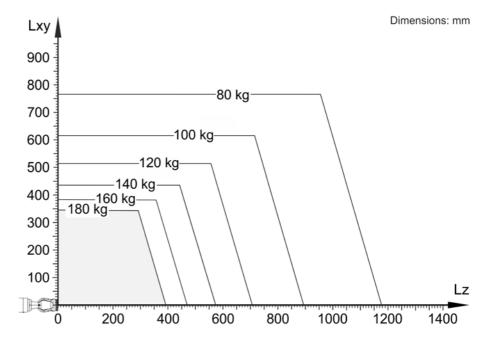
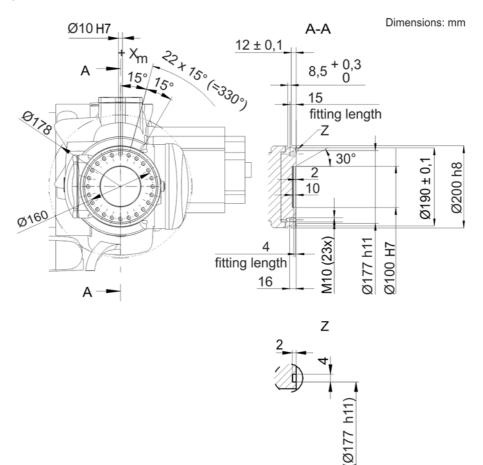


Fig. 4-47: KR QUANTEC extra payload diagram, payload 180 kg

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the

In-line wrist	In-line wrist type	ZH 150/180/210 F-HP
	Mounting flange	see drawing


load data to be entered in the robot controller!

Issued: 01.09.2016 Version: Spez KR QUANTEC extra V8

Mounting flange

Screw grade	A4-80
Screw size	M10
Number of fastening screws	23
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

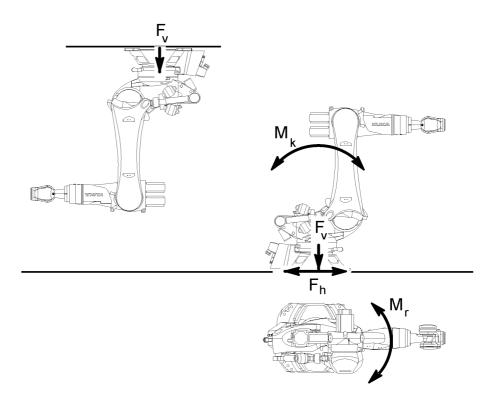


Fig. 4-48: Mounting flange D=160 for F-HP in-line wrist

4.8.4 Loads acting on the foundation, KR 180 R2500 extra C-F-HP

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-49: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.9 Technical data, KR 150 R2700 extra

4.9.1 Basic data, KR 150 R2700 extra

Basic data

	KR 150 R2700 extra
Number of axes	6
Number of controlled axes	6
Volume of working envelope	55 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1068 kg
Rated payload	150 kg
Maximum reach	2696 mm
Protection rating	IP65
Protection rating, in-line wrist	IP65
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR150R2700 EXTRA C4 FLR
Hollow shaft diameter	
A1	139 mm (partially occupied by motor cables)

Ambient conditions

ondi-	Humidity class (EN 60204)	-
Classification of environmental con- ditions (EN 60721-3-3) 3K3		3K3
	Ambient temperature	
	During operation	10 °C to 55 °C (283 K to 328 K)
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

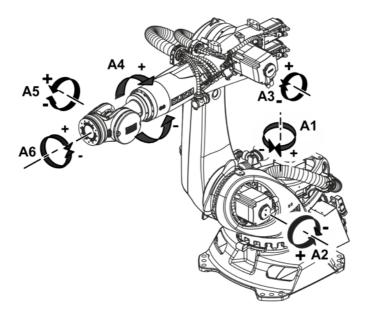
Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bending radius	5x D

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.9.2 Axis data, KR 150 R2700 extra

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-50).

4 Technical data KUKA

Fig. 4-50: Direction of rotation of the axes

Mastering position

Mastering position		
A1	-20 °	
A2	-120 °	
A3	110 °	
A4	0 °	
A5	0 °	
A6	0 °	

Working envelope

The following diagrams (>>> Fig. 4-51) and (>>> Fig. 4-52) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

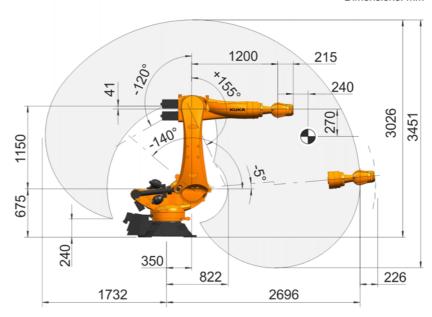


Fig. 4-51: KR 150 R2700 extra, working envelope, side view

4.9.3 Payloads, KR 150 R2700 extra

Payloads

Rated payload	150 kg
Rated mass moment of inertia	75 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm 150 kg	
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

Exceeding the payloads and supplementary loads will re-NOTICE duce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

κυκα

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

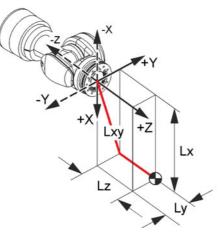
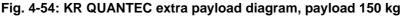



Fig. 4-53: Load center of gravity

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

In-line wrist

In-line wrist type	ZH 150/180/210
Mounting flange	see drawing

Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-55) The symbol X_m indicates the position of the locating element (bushing) in the zero position.

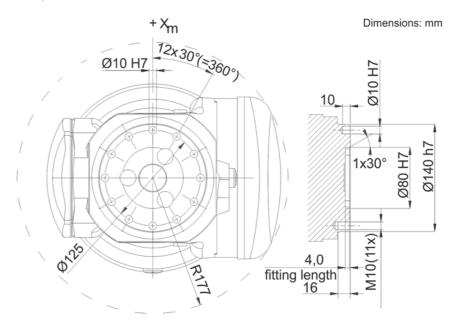
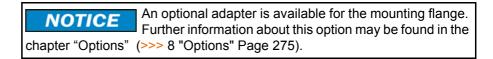
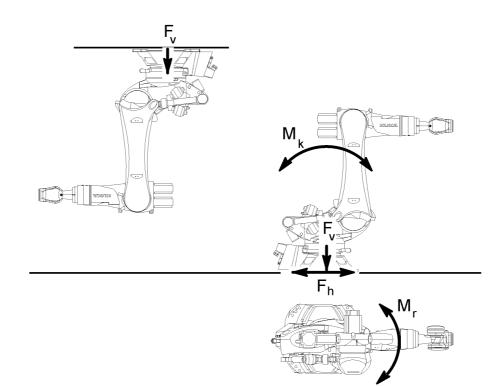




Fig. 4-55: Mounting flange D=125

4.9.4 Loads acting on the foundation, KR 150 R2700 extra

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-56: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

Technical data, KR 150 R2700 extra F 4.10

4.10.1 Basic data, KR 150 R2700 extra F

Basic data

	KR 150 R2700 extra F
Number of axes	6
Number of controlled axes	6
Volume of working envelope	55 m³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1068 kg
Rated payload	150 kg
Maximum reach	2696 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR150R2700 EXTRA C4 FLR

Hollow shaft diameter

A1	139 mm (partially occupied by
	motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

4 Technical data KUKA

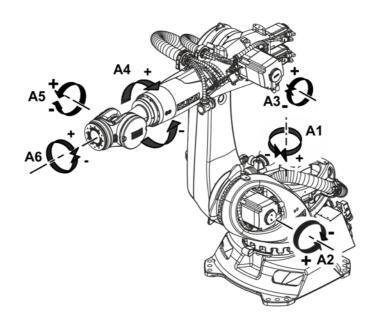
Ambient conditions

Humidity class (EN 60204)	-	
Classification of environmental con- ditions (EN 60721-3-3)	3K3	
Ambient temperature		
During operation	10 °C to 55 °C (283 K to 328 K)	
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	
Minimum bending radius	5x D	


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.10.2 Axis data, KR 150 R2700 extra F

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-57).

Fig. 4-57: Direction of rotation of the axes

Mastering	Mastering position		
position	A1	-20 °	
	A2	-120 °	
	A3	110 °	
	A4	0 °	
	A5	0 °	
	A6	0 °	
	A6	0 °	

Working envelope

The following diagrams (>>> Fig. 4-58) and (>>> Fig. 4-59) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

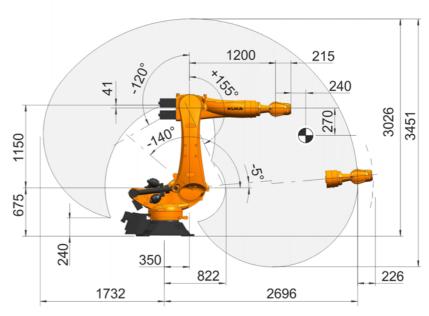
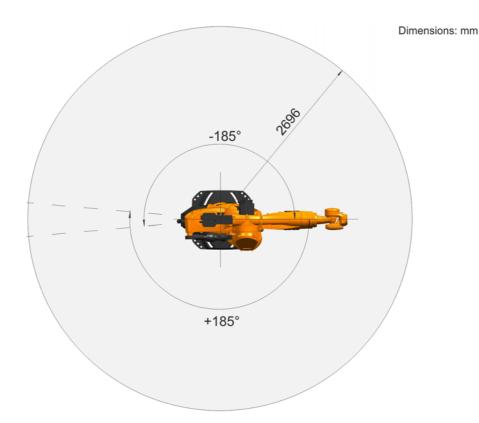



Fig. 4-58: KR 150 R2700 extra, working envelope, side view

4 Technical data

KUKA

Fig. 4-59: KR 150 R2700 extra, working envelope, top view

4.10.3 Payloads, KR 150 R2700 extra F

Rated payload	150 kg
Rated mass moment of inertia	75 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	-
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	-
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	-
Nominal distance to load center of gr	avity
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Payloads

KR QUANTEC extra

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

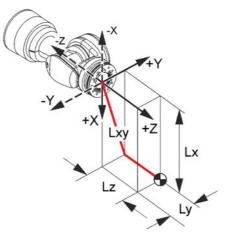


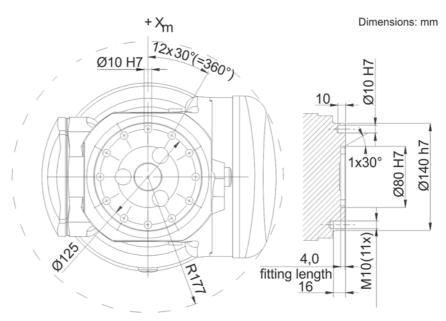
Fig. 4-60: Load center of gravity

Fig. 4-61: KR QUANTEC extra payload diagram, payload 150 kg

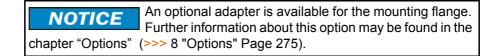
NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the

load data to be entered in the robot controller!

In-line wrist	In-line wrist type	ZH 150/180/210 F
	Mounting flange	see drawing

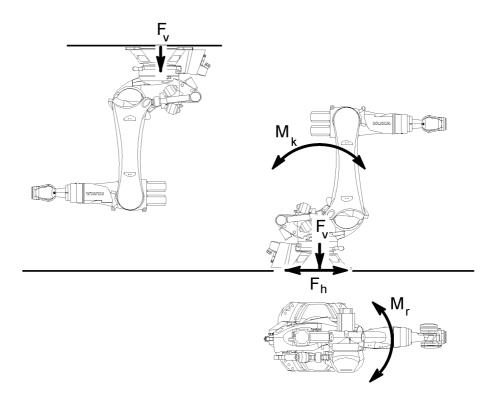

4 Technical data

KUKA


Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-62) The symbol X_m indicates the position of the locating element (bushing) in the zero position.


Fig. 4-62: Mounting flange D=125

4.10.4 Loads acting on the foundation, KR 150 R2700 extra F

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-63: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v .

4.11 Technical data, KR 150 R2700 extra F-HP

4.11.1 Basic data, KR 150 R2700 extra F-HP

Basic data

	KR 150 R2700 extra F-HP
Number of axes	6
Number of controlled axes	6
Volume of working envelope	55 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1068 kg
Rated payload	150 kg
Maximum reach	2696 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR150R2700 EXTRA HP C4 FLR
Hollow shaft diameter	
A1	139 mm (partially occupied by

Hollow Shall ulameter	
A1	139 mm (partially occupied by motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

KR QUANTEC extra

Ambient condi-	Humidity class (EN 60204)	-	
tions	Classification of environmental con- ditions (EN 60721-3-3)	3K3	
	Ambient temperature		
	During operation	10 °C to 55 °C (283 K to 328 K)	
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	
		·	

For operation at low temperatures, it may be necessary to warm up the robot.

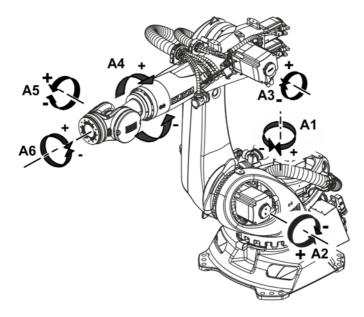
Connecting cables

cal	ble	es	

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.11.2 Axis data, KR 150 R2700 extra F-HP

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-64).

4 Technical data KUKA

Fig. 4-64: Direction of rotation of the axes

Mastering position

Mastering position		
A1	-20 °	
A2	-120 °	
A3	110 °	
A4	0 °	
A5	0 °	
A6	0 °	

Working envelope

The following diagrams (>>> Fig. 4-65) and (>>> Fig. 4-66) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

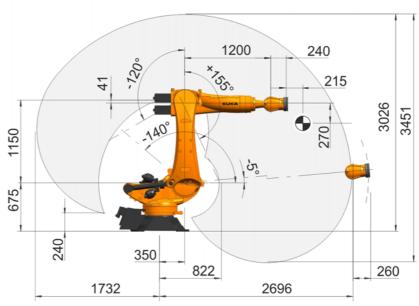
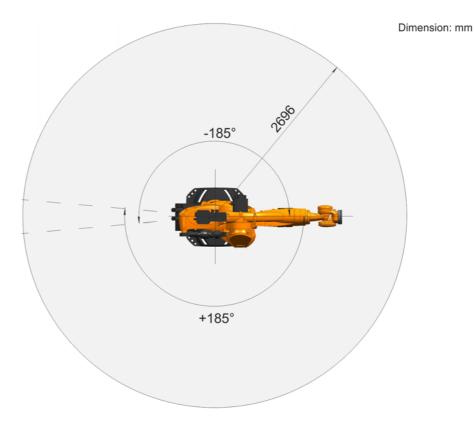



Fig. 4-65: KR 150 R2700 extra F-HP, working envelope, side view

4.11.3 Payloads, KR 150 R2700 extra F-HP

Payloads

T	
Rated payload	150 kg
Rated mass moment of inertia	75 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

Exceeding the payloads and supplementary loads will re-NOTICE duce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

κυκα

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

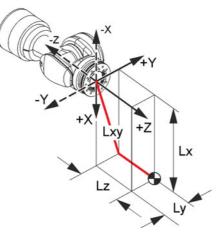
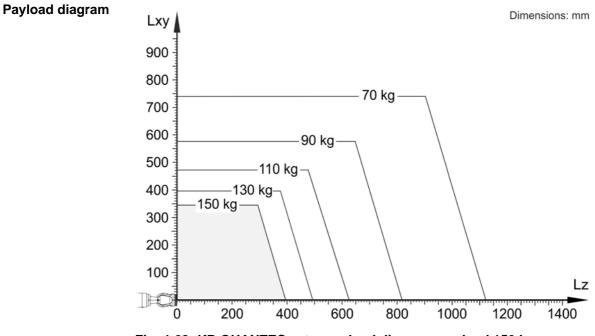
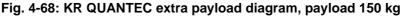




Fig. 4-67: Load center of gravity

This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

In-line wrist

In-line wrist type	ZH 150/180/210 F-HP
Mounting flange	see drawing

KR QUANTEC extra

Mounting flange

Screw grade	A4-80
Screw size	M10
Number of fastening screws	23
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

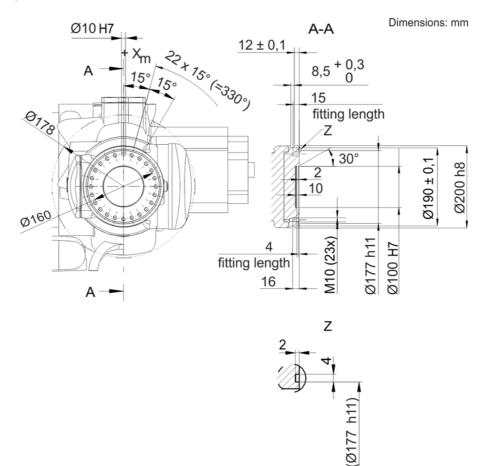
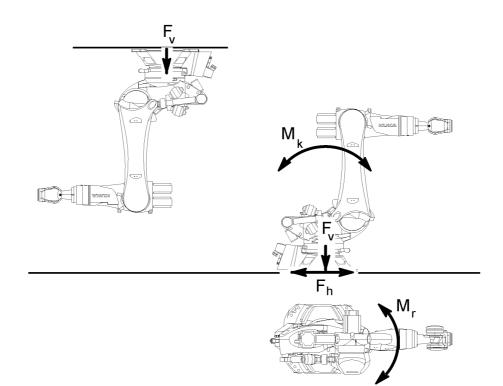



Fig. 4-69: Mounting flange D=160 for F-HP in-line wrist

4.11.4 Loads acting on the foundation, KR 150 R2700 extra F-HP

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-70: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.12 Technical data, KR 150 R2700 extra C

4.12.1 Basic data, KR 150 R2700 extra C

Basic data

	KR 150 R2700 extra C
Number of axes	6
Number of controlled axes	6
Volume of working envelope	55 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1068 kg
Rated payload	150 kg
Maximum reach	2696 mm
Protection rating	IP65
Protection rating, in-line wrist	IP65
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR150R2700 EXTRA C4 CLG
Hollow shaft diameter	
A1	139 mm (partially occupied by motor cables)

Ambient condi-	Humidity class (EN 60204)	-	
tions	Classification of environmental con- ditions (EN 60721-3-3) 3K3		
	Ambient temperature		
	During operation	10 °C to 55 °C (283 K to 328 K)	
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

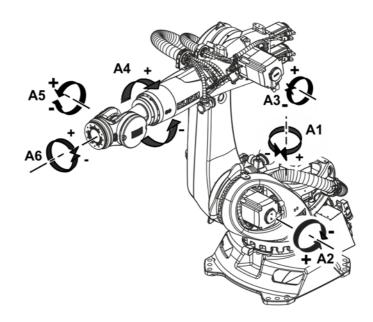
For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

C	able designation	Connector designa- tion robot controller - ro- bot	Interface with robot
M	lotor cable	X20 - X30	Harting connectors at both ends

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bending radius	5x D


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.12.2 Axis data, KR 150 R2700 extra C

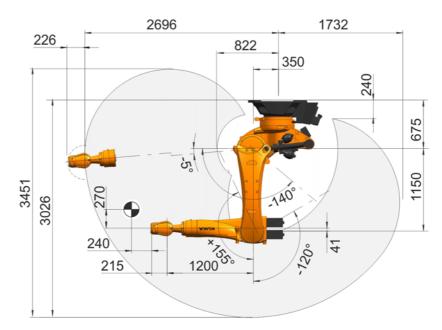
Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-71).

Fig. 4-71: Direction of rotation of the axes

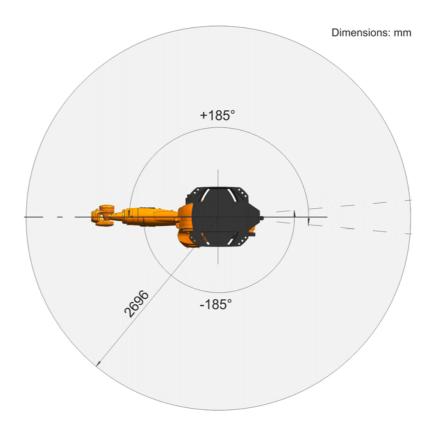
Mastering position


Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-72) and (>>> Fig. 4-73) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.


Dimensions: mm

4 Technical data

KUKA

4.12.3 Payloads, KR 150 R2700 extra C

Rated payload	150 kg
Reduced payload	-
Rated mass moment of inertia	75 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Payloads

KR QUANTEC extra

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

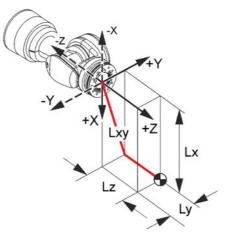


Fig. 4-74: Load center of gravity

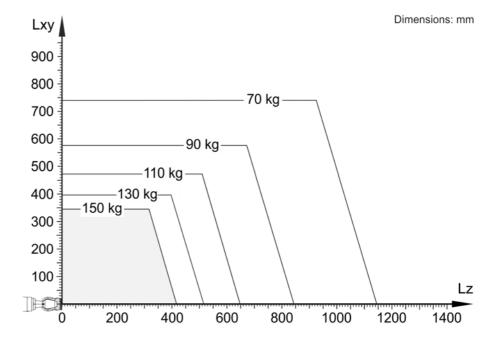
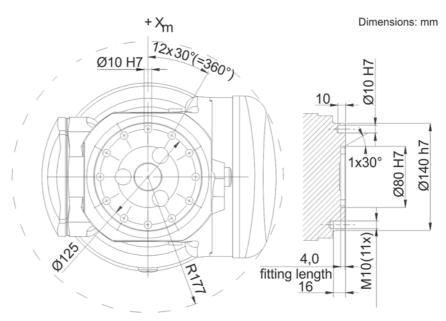


Fig. 4-75: KR QUANTEC extra payload diagram, payload 150 kg

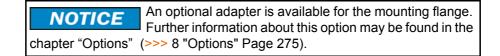
NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the

In-line wrist	In-line wrist type	ZH 150/180/210
	Mounting flange	see drawing

load data to be entered in the robot controller!

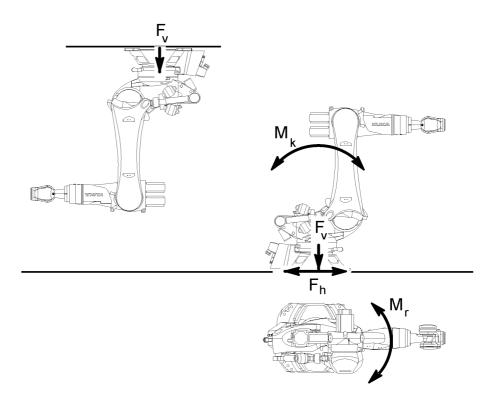

4 Technical data

KUKA


Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-76) The symbol X_m indicates the position of the locating element (bushing) in the zero position.


Fig. 4-76: Mounting flange D=125

4.12.4 Loads acting on the foundation, KR 150 R2700 extra C

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-77: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.13 Technical data, KR 150 R2700 extra C-F

4.13.1 Basic data, KR 150 R2700 extra C-F

Basic data

	KR 150 R2700 extra C-F
Number of axes	6
Number of controlled axes	6
Volume of working envelope	55 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1068 kg
Rated payload	150 kg
Maximum reach	2696 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR150R2700 EXTRA C4 FLR
Hollow shaft diameter	
A1	139 mm (partially occupied by

Hollow shall diameter	
A1	139 mm (partially occupied by motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

KR QUANTEC extra

Ambient condi-	Humidity class (EN 60204)	-	
tions	Classification of environmental con- ditions (EN 60721-3-3)	3K3	
	Ambient temperature		
	During operation	10 °C to 55 °C (283 K to 328 K)	
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	
		·	

For operation at low temperatures, it may be necessary to warm up the robot.

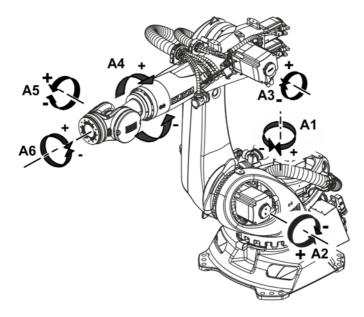
Connecting cables

cal	ble	es	

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
•	7	FO m
Standard	7 m, 15 m, 25 m, 35 m,	111 UC

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.13.2 Axis data, KR 150 R2700 extra C-F

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-78).

4 Technical data KUKA

Fig. 4-78: Direction of rotation of the axes

Mastering position

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-79) and (>>> Fig. 4-80) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

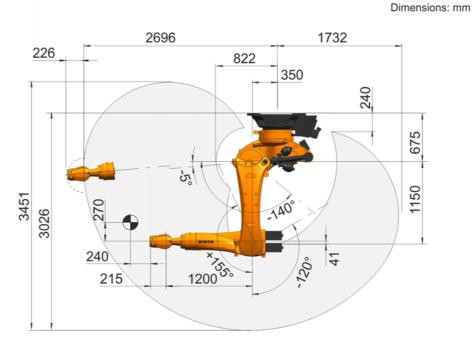
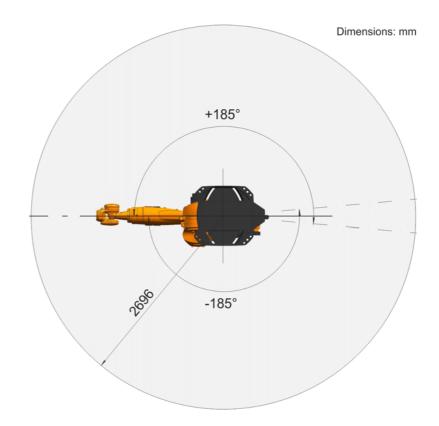
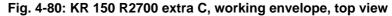




Fig. 4-79: KR 150 R2700 extra C, working envelope, side view

KUKA KR QUANTEC extra

4.13.3 Payloads, KR 150 R2700 extra C-F

Payloads

Rated payload	150 kg
Reduced payload	-
Rated mass moment of inertia	75 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	-
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	-
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	-
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

κυκα

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

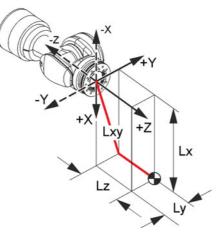
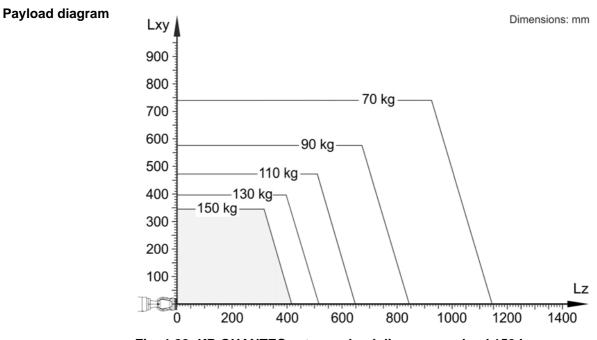
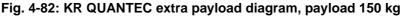




Fig. 4-81: Load center of gravity

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

In-line wrist

In-line wrist type	ZH 150/180/210 F
Mounting flange	see drawing

KR QUANTEC extra

Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-83) The symbol X_m indicates the position of the locating element (bushing) in the zero position.

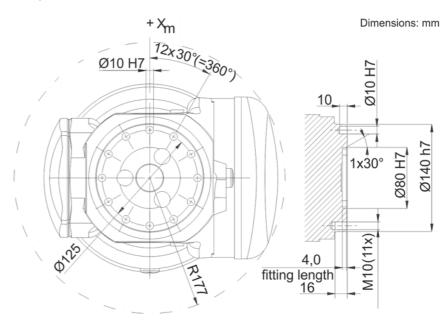
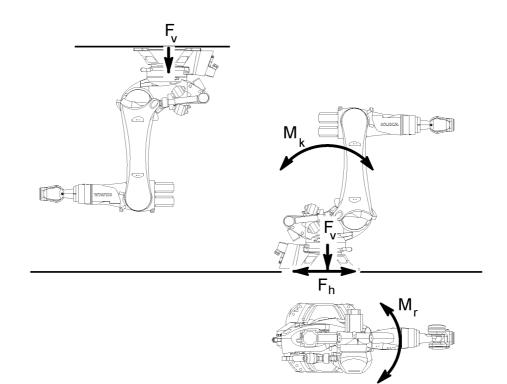



Fig. 4-83: Mounting flange D=125

4.13.4 Loads acting on the foundation, KR 150 R2700 extra C-F

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-84: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.14 Technical data, KR 150 R2700 extra C-F-HP

4.14.1 Basic data, KR 150 R2700 extra C-F-HP

Basic data

	KR 150 R2700 extra C-F-HP
Number of axes	6
Number of controlled axes	6
Volume of working envelope	55 m³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1068 kg
Rated payload	150 kg
Maximum reach	2696 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR150R2700 EXTRA HP C4 CLG

Hollow shaft diameter

A1	139 mm (partially occupied by
	motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

4 Technical data KUKA

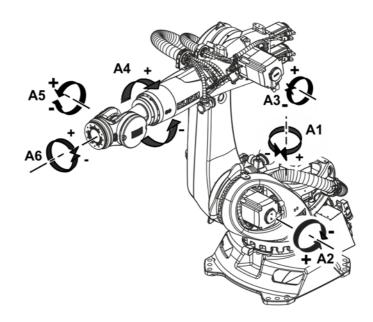
Ambient conditions

Humidity class (EN 60204)	-	
Classification of environmental con- ditions (EN 60721-3-3)	3K3	
Ambient temperature		
During operation	10 °C to 55 °C (283 K to 328 K)	
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m,	50 m
Minimum bending radius	5x D	


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.14.2 Axis data, KR 150 R2700 extra C-F-HP

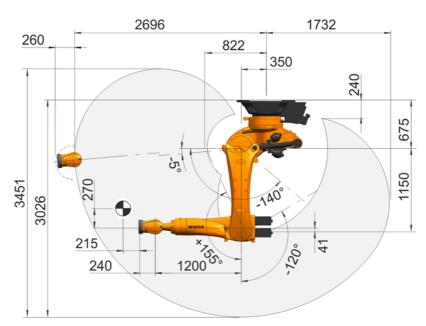
Axis data

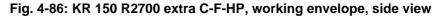
Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	179 °/s	
A5	172 °/s	
A6	219 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-85).

Fig. 4-85: Direction of rotation of the axes

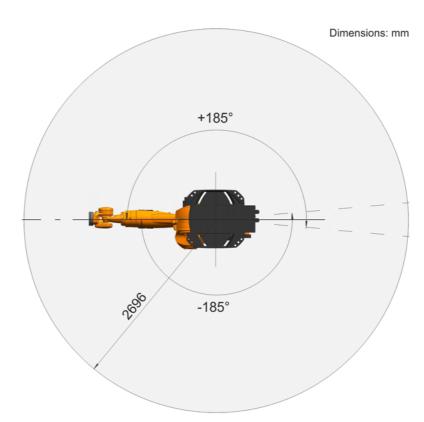
Mastering position

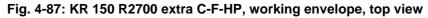

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °


Working envelope

The following diagrams (>>> Fig. 4-86) and (>>> Fig. 4-87) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.


Dimensions: mm



4 Technical data

KUKA

4.14.3 Payloads, KR 150 R2700 extra C-F-HP

Rated payload	150 kg
Reduced payload	-
Rated mass moment of inertia	75 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Payloads

KR QUANTEC extra

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

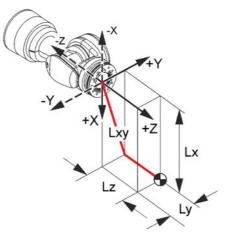


Fig. 4-88: Load center of gravity

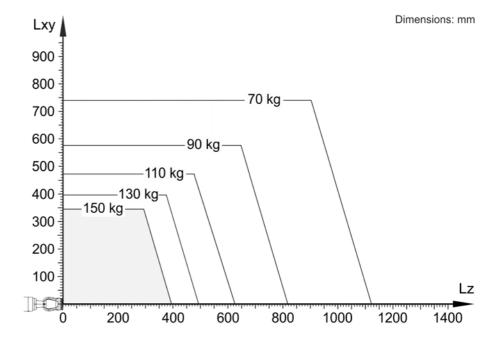
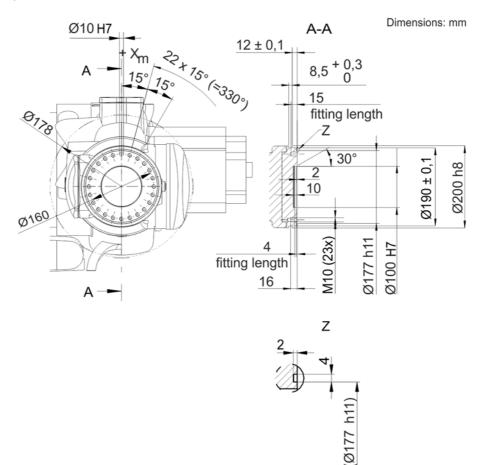


Fig. 4-89: KR QUANTEC extra payload diagram, payload 150 kg

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the

In-line wrist	In-line wrist type	ZH 150/180/210 F-HP
	Mounting flange	see drawing

load data to be entered in the robot controller!


4 Technical data

KUKA

Mounting flange

Screw grade	A4-80
Screw size	M10
Number of fastening screws	23
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

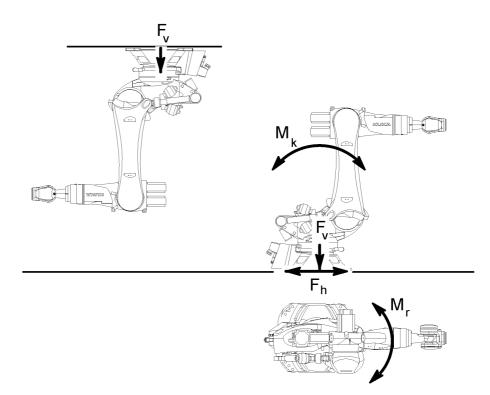


Fig. 4-90: Mounting flange D=160 for F-HP in-line wrist

4.14.4 Loads acting on the foundation, KR 150 R2700 extra C-F-HP

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-91: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v .

4.15 Technical data, KR 120 R2900 extra

4.15.1 Basic data, KR 120 R2900 extra

Basic data

	KR 120 R2900 extra
Number of axes	6
Number of controlled axes	6
Volume of working envelope	66 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1084 kg
Rated payload	120 kg
Maximum reach	2896 mm
Protection rating	IP65
Protection rating, in-line wrist	IP65
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR120R2900 EXTRA C4 FLR
Hollow shaft diameter	
A1	139 mm (partially occupied by motor cables)

Ambient conditions

di-	Humidity class (EN 60204)	-
	Classification of environmental con- ditions (EN 60721-3-3)	3K3
	Ambient temperature	
	During operation	10 °C to 55 °C (283 K to 328 K)
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

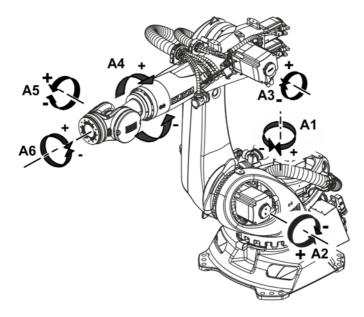
Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bending radius	5x D

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.15.2 Axis data, KR 120 R2900 extra

Axis data

Motion range	
A1	±185 °
A2	-140 ° / -5 °
A3	-120 ° / 155 °
A4	±350 °
A5	±125 °
A6	±350 °
Speed with rated payload	
A1	123 °/s
A2	115 °/s
A3	120 °/s
A4	292 °/s
A5	258 °/s
A6	284 °/s

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-92).

4 Technical data KUKA

Fig. 4-92: Direction of rotation of the axes

Mastering position

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-93) and (>>> Fig. 4-94) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

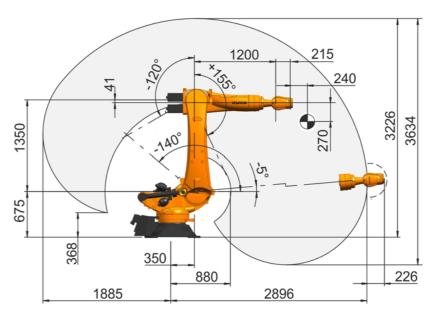
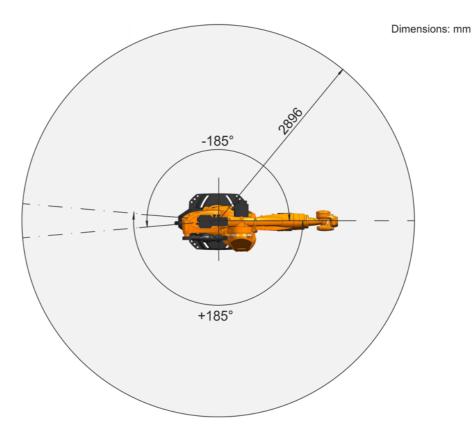
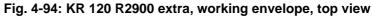




Fig. 4-93: KR 120 R2900 extra, working envelope, side view

Payloads, KR 120 R2900 extra 4.15.3

Payl	oads
------	------

Rated payload	120 kg
Rated mass moment of inertia	60 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm 150 kg	
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

Exceeding the payloads and supplementary loads will re-NOTICE duce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

KUKA

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

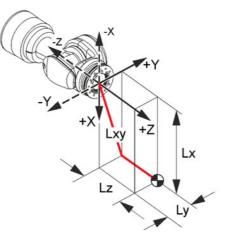
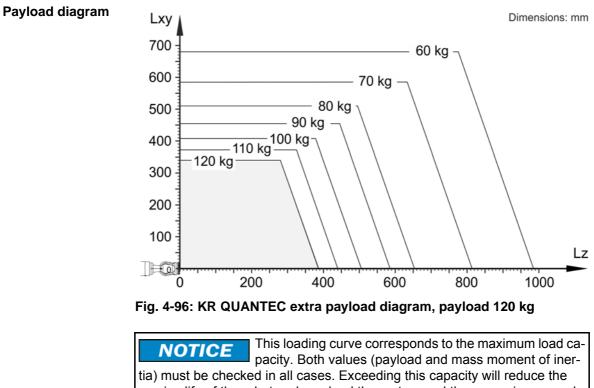



Fig. 4-95: Load center of gravity

service life of the robot and overload the motors and the gears; in any such	
case the KUKA Roboter GmbH must be consulted beforehand.	
The values determined here are necessary for planning the robot application.	
For commissioning the robot, additional input data are required in accor-	
dance with the operating and programming instructions of the KUKA System	
Software.	
The mass inertia must be verified using KUKA.Load. It is imperative for the	
load data to be entered in the robot controller!	

 In-line wrist
 In-line wrist type
 ZH 90/120

 Mounting flange
 see drawing

 Mounting flange
 Screw grade
 10.9

 Screw size
 M10

Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-97) The symbol X_m indicates the position of the locating element (bushing) in the zero position.

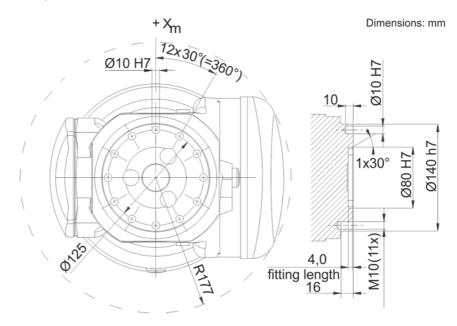
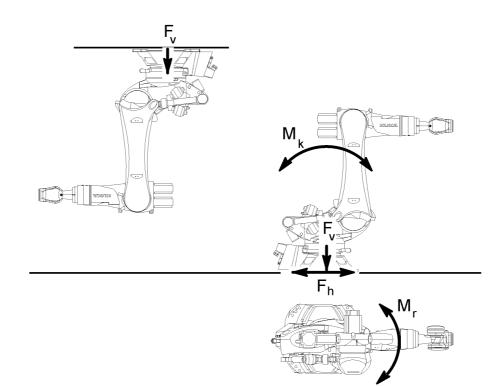



Fig. 4-97: Mounting flange D=125

NOTICE An optional adapter is available for the mounting flange. Further information about this option may be found in the chapter "Options" (>>> 8 "Options" Page 275).

4.15.4 Loads acting on the foundation, KR 120 R2900 extra

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-98: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v .

Technical data, KR 180 R2500 extra F 4.16

4.16.1 Basic data, KR 120 R2900 extra F

Basic data

	KR 120 R2900 extra F
Number of axes	6
Number of controlled axes	6
Volume of working envelope	66 m³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1084 kg
Rated payload	120 kg
Maximum reach	2896 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR120R2900 EXTRA C4 FLR

Hollow shaft diameter

A1	139 mm (partially occupied by
	motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%	
Compressed air	Free of oil and water	
	Class 4 in accordance with ISO 8573-1	
Compressed air sup- ply line	Air line in the cable set	
Air consumption	0.1 m ³ /h	
Air line connection	Push-in fitting for hose, 6 mm	
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)	
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)	
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)	
Thermal loading	10 s/min at 353 K (180 °C)	
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.	
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.	
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.	
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.	

4 Technical data KUKA

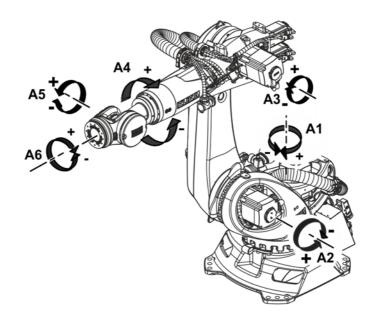
Ambient conditions

Humidity class (EN 60204)	-	
Classification of environmental con- ditions (EN 60721-3-3)	3K3	
Ambient temperature		
During operation	10 °C to 55 °C (283 K to 328 K)	
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	
Minimum bending radius	5x D	


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.16.2 Axis data, KR 120 R2900 extra F

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-99).

Fig. 4-99: Direction of rotation of the axes

Mastering	Mastering position	
position	A1	-20 °
	A2	-120 °
	A3	110 °
	A4	0 °
	A5	0 °
	A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-100) and (>>> Fig. 4-101) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

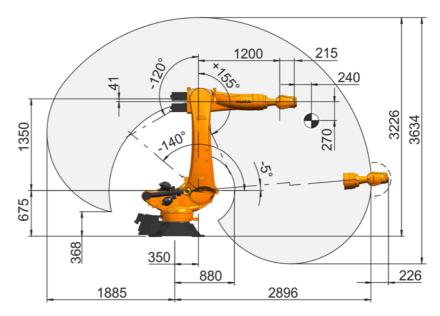
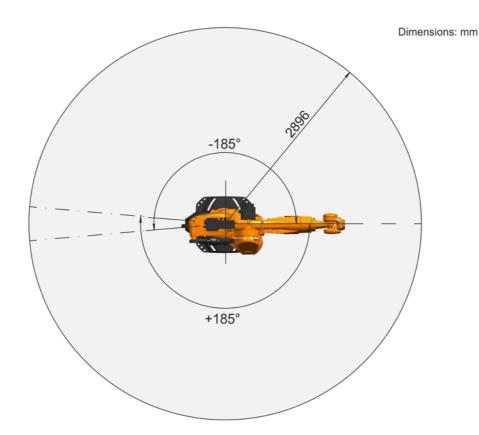



Fig. 4-100: KR 120 R2900 extra, working envelope, side view

4 Technical data

KUKA

4.16.3 Payloads, KR 120 R2900 extra F

Rated payload	120 kg
Rated mass moment of inertia	60 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	-
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	-
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	-
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

KR QUANTEC extra

Load center of gravity For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

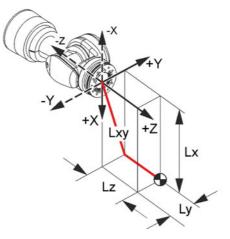
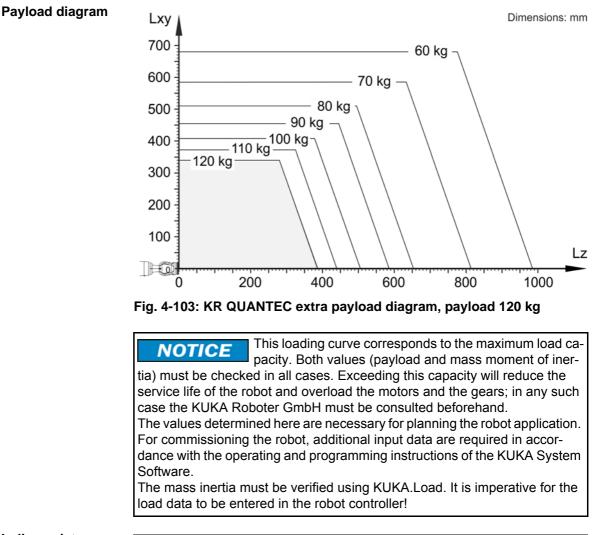



Fig. 4-102: Load center of gravity

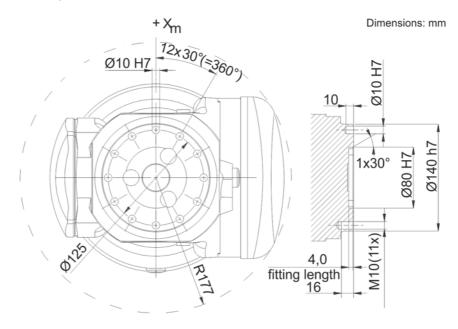
In-line wrist	In-line wrist type	ZH 90/120 F
	Mounting flange	see drawing
Mounting flange	Screw grade	10.9
	Screw size	M10

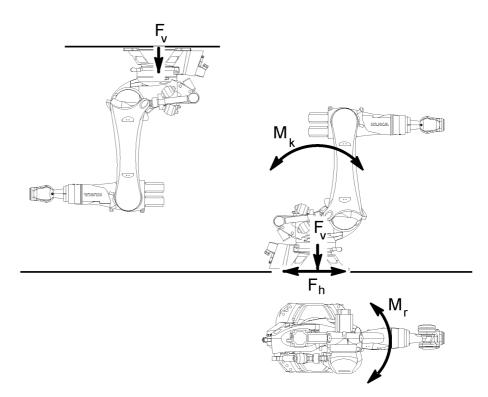
4 Technical data

KUKA

Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-104) The symbol X_m indicates the position of the locating element (bushing) in the zero position.




Fig. 4-104: Mounting flange D=125

NOTICE An optional adapter is available for the mounting flange. Further information about this option may be found in the chapter "Options" (>>> 8 "Options" Page 275).

4.16.4 Loads acting on the foundation, KR 120 R2900 extra F

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-105: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v .

4.17 Technical data, KR 120 R2900 extra F-HP

4.17.1 Basic data, KR 120 R2900 extra F-HP

Basic data

	KR 120 R2900 extra F-HP
Number of axes	6
Number of controlled axes	6
Volume of working envelope	66 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1084 kg
Rated payload	120 kg
Maximum reach	2896 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR120R2900 EXTRA HP C4 FLR
Hollow shaft diameter	
A1	139 mm (partially occupied by

Hollow Shall ulameter	
A1	139 mm (partially occupied by motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

KR QUANTEC extra

Ambient condi-	Humidity class (EN 60204)	-
tions	Classification of environmental con- ditions (EN 60721-3-3)	3K3
	Ambient temperature	
	During operation	10 °C to 55 °C (283 K to 328 K)
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)
		·

For operation at low temperatures, it may be necessary to warm up the robot.

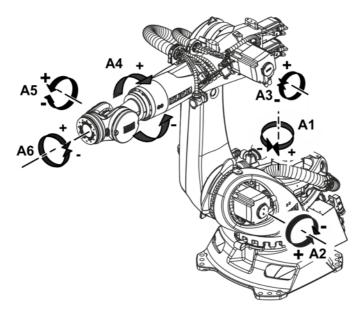
Connecting С

cal	ble	es	

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.17.2 Axis data, KR 120 R2900 extra F-HP

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-106).

4 Technical data KUKA

Fig. 4-106: Direction of rotation of the axes

Mastering position

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0°

Working envelope

The following diagrams (>>> Fig. 4-107) and (>>> Fig. 4-108) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

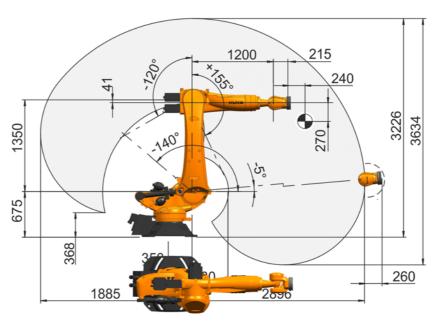
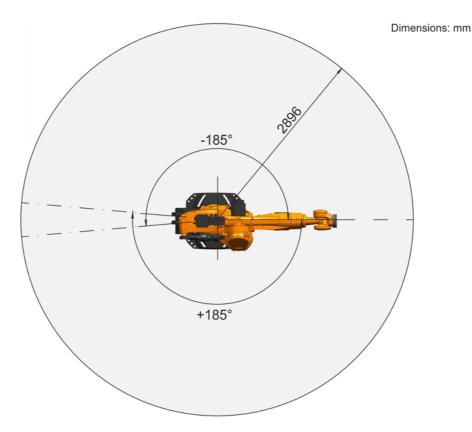



Fig. 4-107: KR 120 R2900 extra F-HP, working envelope, side view

Payloads, KR 120 R2900 extra F-HP 4.17.3

Payl	oads
------	------

Rated payload	120 kg	
Rated mass moment of inertia	60 kgm²	
Rated total load	-	
Rated supplementary load, base frame	-	
Maximum supplementary load, base frame	-	
Rated supplementary load, rotating column	-	
Maximum supplementary load, rotating column	300 kg	
Rated supplementary load, link arm	-	
Maximum supplementary load, link arm	130 kg	
Rated supplementary load, arm	50 kg	
Maximum supplementary load, arm	150 kg	
Nominal distance to load center of gravity		
Lxy	270 mm	
Lz	240 mm	

Exceeding the payloads and supplementary loads will re-NOTICE duce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

Κυκα

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

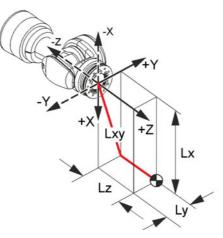
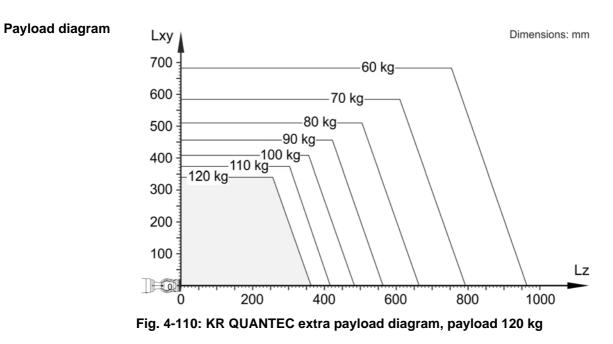



Fig. 4-109: Load center of gravity

	NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!		
In-line wrist	In-line wrist type	ZH 90/120 F-HP	
	Mounting flange	see drawing	
Mounting flange	O	A 4 00	
mounting hange	Screw grade	A4-80	
	Screw size	M10	

Number of fastening screws	23
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

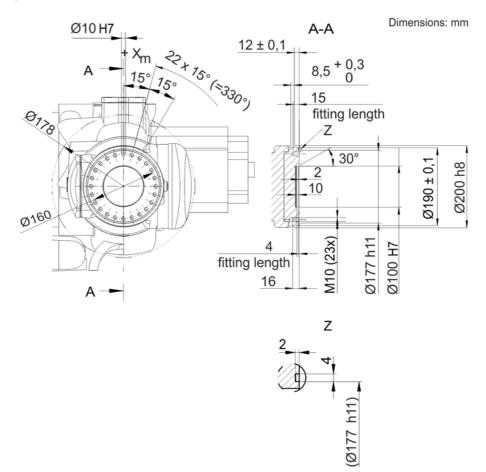
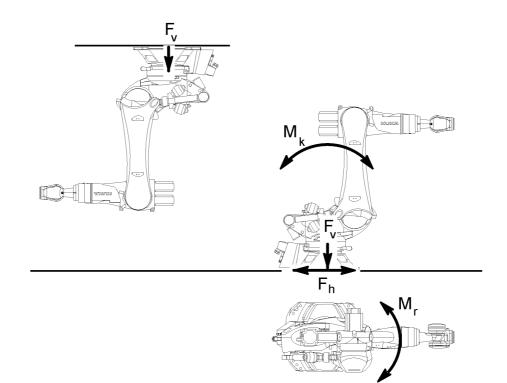



Fig. 4-111: Mounting flange D=160 for F-HP in-line wrist

4.17.4 Loads acting on the foundation, KR 120 R2900 extra F-HP

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-112: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.18 Technical data, KR 120 R2900 extra C

4.18.1 Basic data, KR 120 R2900 extra C

Basic data

	KR 120 R2900 extra C
Number of axes	6
Number of controlled axes	6
Volume of working envelope	66 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1084 kg
Rated payload	120 kg
Maximum reach	2896 mm
Protection rating	IP65
Protection rating, in-line wrist	IP65
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR120R2900 EXTRA C4 CLG
Hollow shaft diameter	
A1	139 mm (partially occupied by motor cables)

Ambient	condi-
tions	

Humidity class (EN 60204)	-	
Classification of environmental con- ditions (EN 60721-3-3)	3K3	
Ambient temperature		
During operation	10 °C to 55 °C (283 K to 328 K)	
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up

Connecting

i

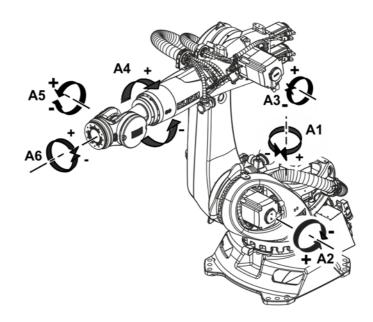
the robot.

connecting	
cables	

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bending radius	5x D


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.18.2 Axis data, KR 120 R2900 extra C

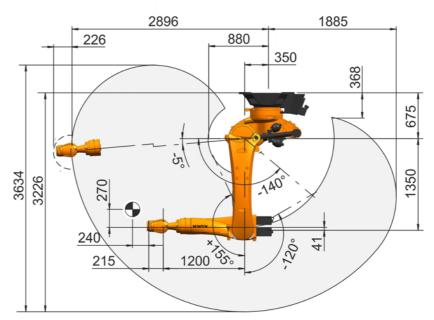
Axis data

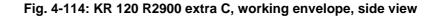
Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-113).

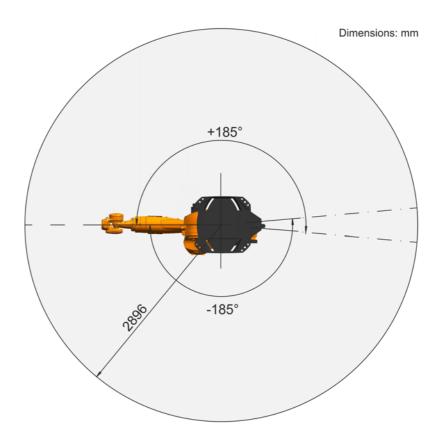
Fig. 4-113: Direction of rotation of the axes

Mastering position


Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °


Working envelope

The following diagrams (>>> Fig. 4-114) and (>>> Fig. 4-115) show the load center of gravity, shape and size of the working envelope.


The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

4 Technical data KUKA

4.18.3 Payloads, KR 120 R2900 extra C

Payloads	
----------	--

Rated payload	120 kg
Reduced payload	-
Rated mass moment of inertia	60 kgm ²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

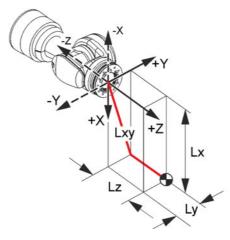
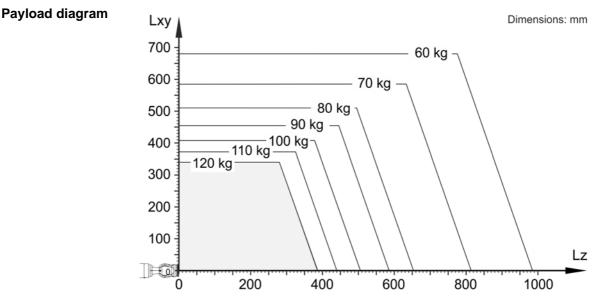
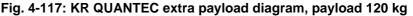




Fig. 4-116: Load center of gravity

This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software.

The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

4 Technical data

Κυκα

In-line wrist

Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

ZH 90/120

see drawing

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-118) The symbol X_m indicates the position of the locating element (bushing) in the zero position.

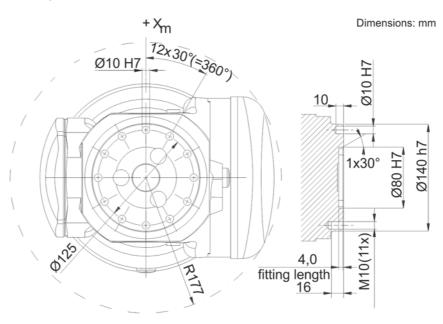
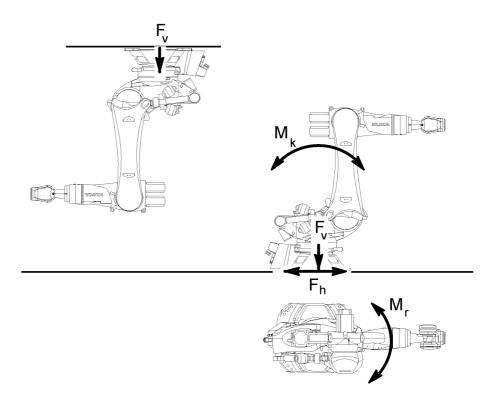


Fig. 4-118: Mounting flange D=125

NOTICE An optional adapter is available for the mounting flange. Further information about this option may be found in the chapter "Options" (>>> 8 "Options" Page 275).


4.18.4 Loads acting on the foundation, KR 120 R2900 extra C

In-line wrist type

Mounting flange

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-119: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.19 Technical data, KR 120 R2900 extra C-F

4.19.1 Basic data, KR 120 R2900 extra C-F

Basic data

	KR 120 R2900 extra C-F
Number of axes	6
Number of controlled axes	6
Volume of working envelope	66 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1084 kg
Rated payload	120 kg
Maximum reach	2896 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR120R2900 EXTRA C4 CLG
Hollow shaft diameter	
A1	139 mm (partially occupied by

Hollow shall diameter	
A1	139 mm (partially occupied by motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

KR QUANTEC extra

Ambient condi-	Humidity class (EN 60204)	-
tions	Classification of environmental con- ditions (EN 60721-3-3)	3K3
	Ambient temperature	
	During operation	10 °C to 55 °C (283 K to 328 K)
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)
		·

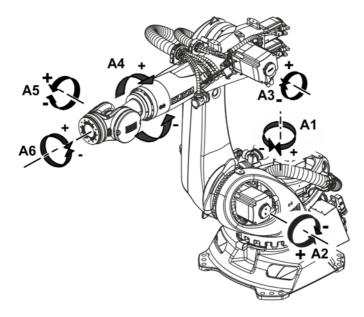
For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths Standard	7 m, 15 m, 25 m, 35 m,	50 m

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.19.2 Axis data, KR 120 R2900 extra C-F

Axis data

Motion range	
A1	±185 °
A2	-140 ° / -5 °
A3	-120 ° / 155 °
A4	±350 °
A5	±125 °
A6	±350 °
Speed with rated payload	
A1	123 °/s
A2	115 °/s
A3	120 °/s
A4	292 °/s
A5	258 °/s
A6	284 °/s

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-120).

4 Technical data KUKA

Fig. 4-120: Direction of rotation of the axes

Mastering position

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-121) and (>>> Fig. 4-122) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

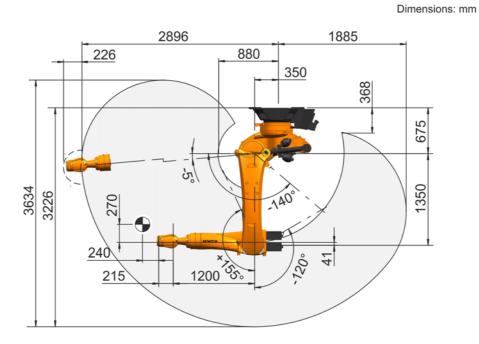
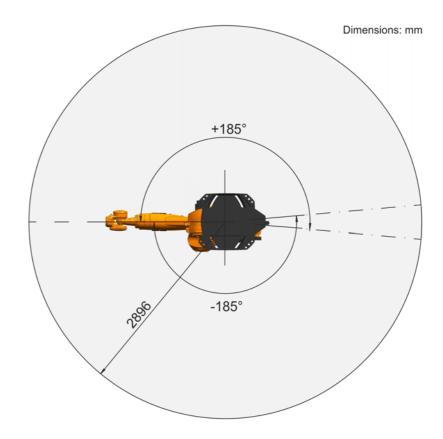



Fig. 4-121: KR 120 R2900 extra C, working envelope, side view

KUKA KR QUANTEC extra

4.19.3 Payloads, KR 120 R2900 extra C-F

Payloads

Rated payload	120 kg
Reduced payload	-
Rated mass moment of inertia	60 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	-
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	-
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	-
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

4 Technical data

κυκα

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

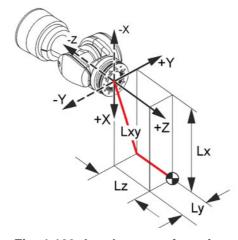
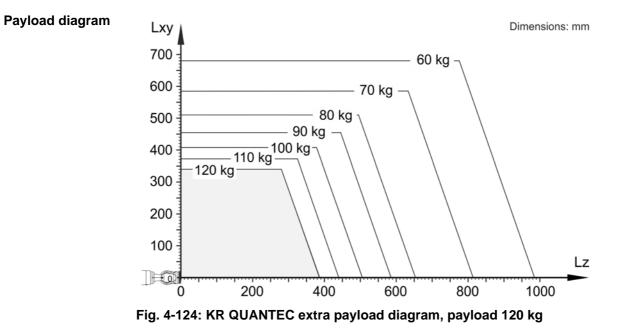
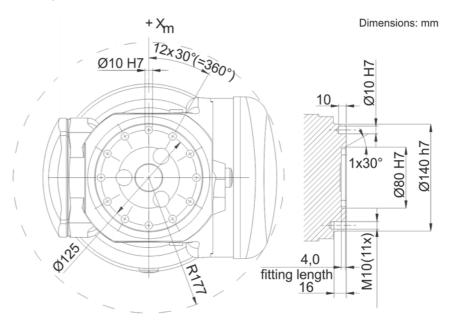



Fig. 4-123: Load center of gravity

This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

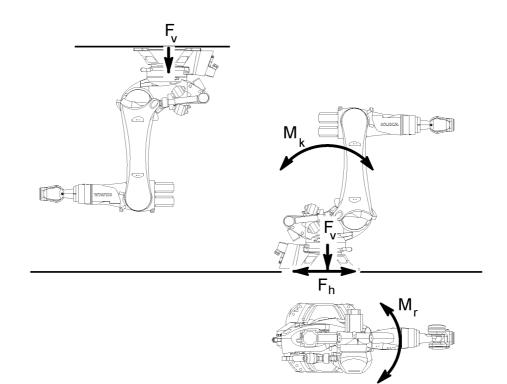

KR QUANTEC extra

In-line wrist	In-line wrist type	ZH 90/120 F
	Mounting flange	see drawing

Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-125) The symbol X_m indicates the position of the locating element (bushing) in the zero position.



NOTICE An optional adapter is available for the mounting flange. Further information about this option may be found in the chapter "Options" (>>> 8 "Options" Page 275).

4.19.4 Loads acting on the foundation, KR 120 R2900 extra C-F

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-126: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

Technical data, KR 120 R2900 extra C-F-HP 4.20

4.20.1 Basic data, KR 120 R2900 extra C-F-HP

Basic data

	KR 120 R2900 extra C-F-HP
Number of axes	6
Number of controlled axes	6
Volume of working envelope	66 m³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1084 kg
Rated payload	120 kg
Maximum reach	2896 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR120R2900 EXTRA HP C4 CLG

Hollow shaft diameter

A1	139 mm (partially occupied by
	motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

4 Technical data KUKA

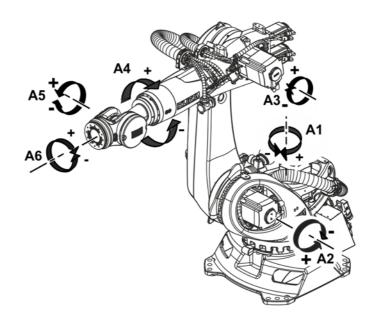
Ambient conditions

Humidity class (EN 60204)	-	
Classification of environmental con- ditions (EN 60721-3-3)	3K3	
Ambient temperature		
During operation	10 °C to 55 °C (283 K to 328 K)	
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m,	50 m
Minimum bending radius	5x D	


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.20.2 Axis data, KR 120 R2900 extra C-F-HP

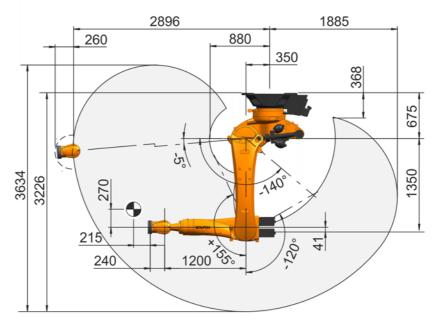
Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-127).

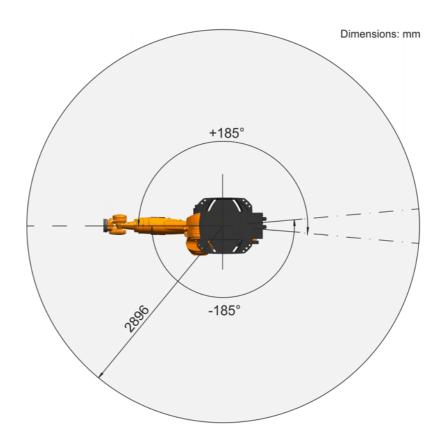
Fig. 4-127: Direction of rotation of the axes

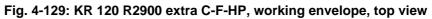
Mastering position


Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-128) and (>>> Fig. 4-129) show the load center of gravity, shape and size of the working envelope.


The reference point for the working envelope is the intersection of axis 4 with axis 5.


Dimensions: mm

4 Technical data KUKA

4.20.3 Payloads, KR 120 R2900 extra C-F-HP

Rated payload	120 kg
Reduced payload	-
Rated mass moment of inertia	60 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm
	Reduced payload Rated mass moment of inertia Rated total load Rated supplementary load, base frame Maximum supplementary load, base frame Rated supplementary load, rotating column Maximum supplementary load, arm Maximum supplementary load, link arm Maximum supplementary load, link arm Maximum supplementary load, link arm Rated supplementary load, arm Maximum supplementary load, arm Nominal distance to load center of gra Lxy

Payloads

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

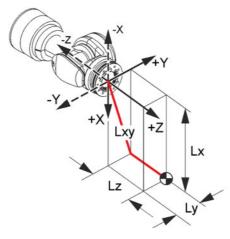
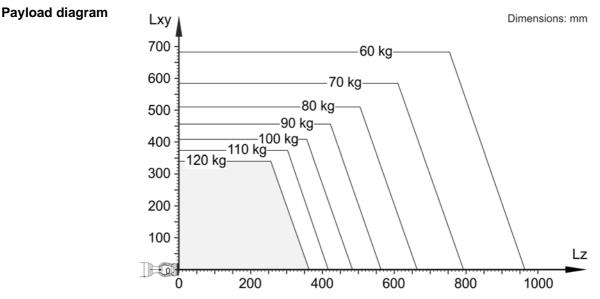
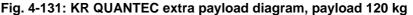




Fig. 4-130: Load center of gravity

This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software.

The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

In-line wrist

In-line wrist typeZH 90/120 F-HPMounting flangesee drawing

Mounting flange

Screw grade	A4-80
Screw size	M10
Number of fastening screws	23
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

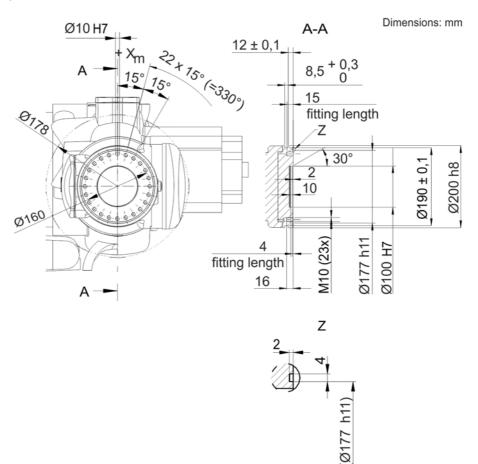
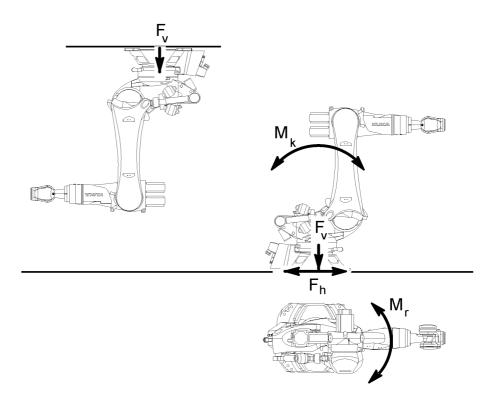



Fig. 4-132: Mounting flange D=160 for F-HP in-line wrist

4.20.4 Loads acting on the foundation, KR 120 R2900 extra C-F-HP

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-133: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.21 Technical data, KR 90 R3100 extra

4.21.1 Basic data, KR 90 R3100 extra

Basic data

	KR 90 R3100 extra
Number of axes	6
Number of controlled axes	6
Volume of working envelope	84 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1092 kg
Rated payload	90 kg
Maximum reach	3095 mm
Protection rating	IP65
Protection rating, in-line wrist	IP65
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR90R3100 EXTRA C4 FLR
Hollow shaft diameter	
A1	139 mm (partially occupied by motor cables)

Ambient conditions

condi-	Humidity class (EN 60204)	-
	Classification of environmental con-	3K3
	ditions (EN 60721-3-3)	
Ambient temperature		
	During operation	10 °C to 55 °C (283 K to 328 K)
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

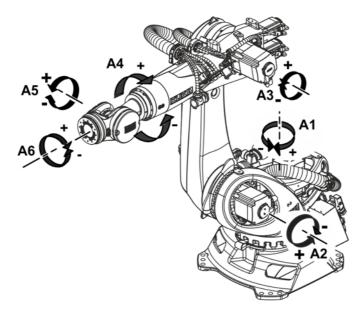
Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bonding radius	5x D

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.21.2 Axis data, KR 90 R3100 extra

Axis data

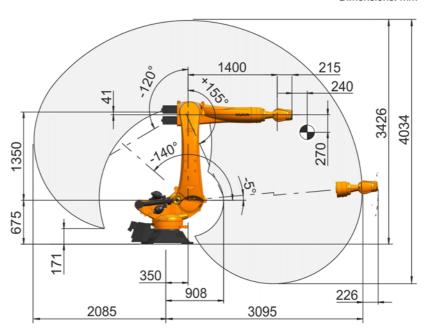
Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

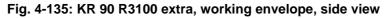
The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-134).

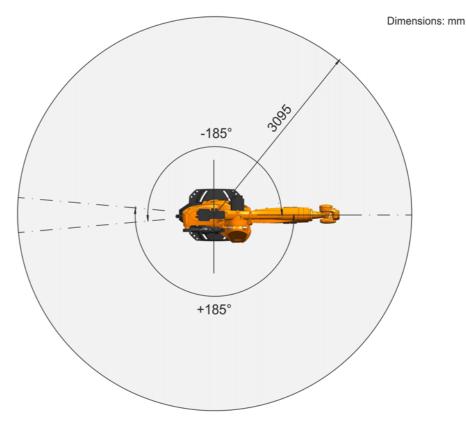
4 Technical data KUKA

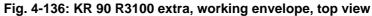
Fig. 4-134: Direction of rotation of the axes

Mastering position


Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °


Working envelope


The following diagrams (>>> Fig. 4-135) and (>>> Fig. 4-136) show the load center of gravity, shape and size of the working envelope.


The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

4.21.3 Payloads, KR 90 R3100 extra

Payloads	
----------	--

Rated payload	90 kg
Rated mass moment of inertia	45 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

Exceeding the payloads and supplementary loads will re-NOTICE duce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

KUKA

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

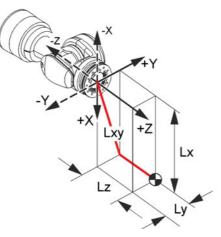
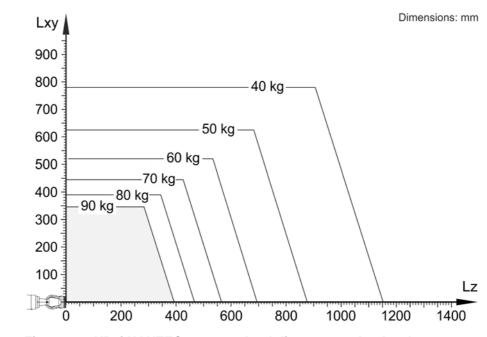
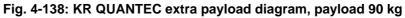




Fig. 4-137: Load center of gravity

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of iner-
tia) must be checked in all cases. Exceeding this capacity will reduce the
service life of the robot and overload the motors and the gears; in any such
case the KUKA Roboter GmbH must be consulted beforehand.
The values determined here are necessary for planning the robot application.
For commissioning the robot, additional input data are required in accor-
dance with the operating and programming instructions of the KUKA System
Software.
The mass inertia must be verified using KUKA.Load. It is imperative for the
load data to be entered in the robot controller!

In-line wrist

In-line wrist type	ZH 90/120
Mounting flange	see drawing

KR QUANTEC extra

Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-139) The symbol X_m indicates the position of the locating element (bushing) in the zero position.

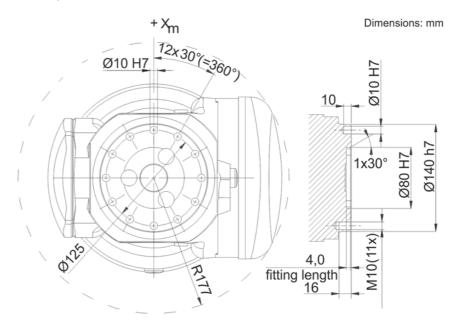
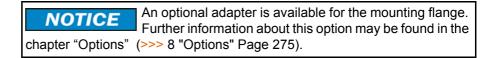
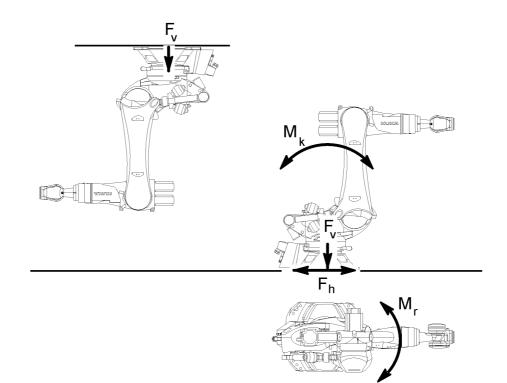




Fig. 4-139: Mounting flange D=125

4.21.4 Loads acting on the foundation, KR 90 R3100 extra

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-140: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v .

Technical data, KR 90 R3100 extra F 4.22

4.22.1 Basic data, KR 90 R3100 extra F

Basic data

	KR 90 R3100 extra F
Number of axes	6
Number of controlled axes	6
Volume of working envelope	84 m³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1092 kg
Rated payload	90 kg
Maximum reach	3095 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	-
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR90R3100 EXTRA C4 FLR

Hollow shaft diameter

A1	139 mm (partially occupied by
	motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

4 Technical data KUKA

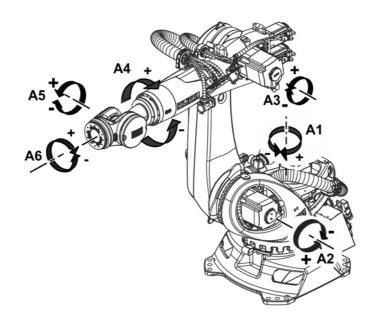
Ambient conditions

Humidity class (EN 60204)	-	
Classification of environmental con- ditions (EN 60721-3-3)	3K3	
Ambient temperature		
During operation	10 °C to 55 °C (283 K to 328 K)	
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	
Minimum bending radius	5x D	


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.22.2 Axis data, KR 90 R3100 extra F

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-141).

Fig. 4-141: Direction of rotation of the axes

Mastering position

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-142) and (>>> Fig. 4-143) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

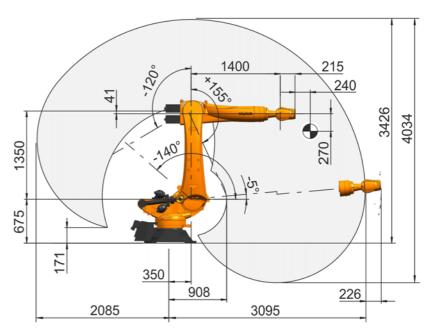
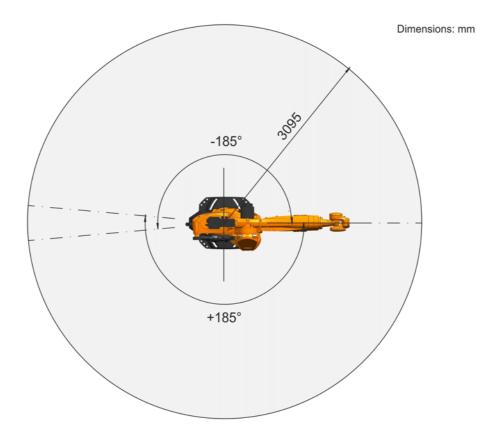
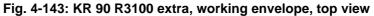




Fig. 4-142: KR 90 R3100 extra, working envelope, side view

4 Technical data

KUKA

4.22.3 Payloads, KR 90 R3100 extra F

Rated payload	90 kg
Rated mass moment of inertia	45 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	-
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	-
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	-
Nominal distance to load center of gra	avity
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

KR QUANTEC extra

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

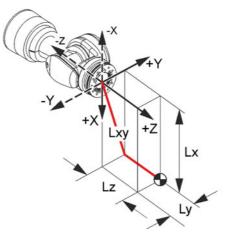


Fig. 4-144: Load center of gravity

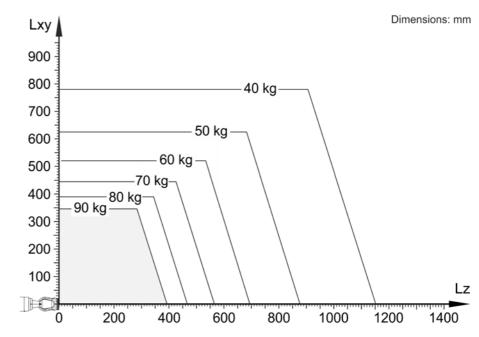


Fig. 4-145: KR QUANTEC extra payload diagram, payload 90 kg

This loading curve corresponds to the maximum load ca-NOTICE pacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

e wrist	In-line wrist type	ZH 90/120 F
	Mounting flange	see drawing

In-line

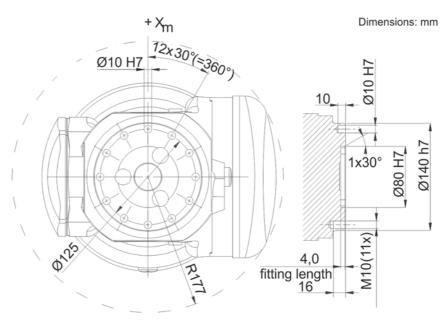
4 Technical data

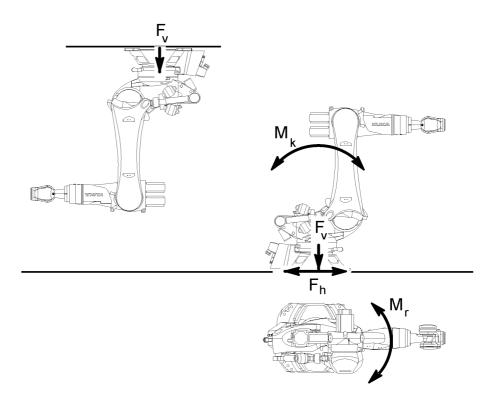
KUKA

Mounting flange

Screw grade	10.9
Screw size	M10
Number of fastening screws	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-146) The symbol X_m indicates the position of the locating element (bushing) in the zero position.




Fig. 4-146: Mounting flange D=125

NOTICE An optional adapter is available for the mounting flange. Further information about this option may be found in the chapter "Options" (>>> 8 "Options" Page 275).

4.22.4 Loads acting on the foundation, KR 90 R3100 extra F

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-147: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v .

4.23 Technical data, KR 90 R3100 extra F-HP

4.23.1 Basic data, KR 90 R3100 extra F-HP

Basic data

	KR 90 R3100 extra F-HP
Number of axes	6
Number of controlled axes	6
Volume of working envelope	84 m³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1092 kg
Rated payload	90 kg
Maximum reach	3095 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Floor
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 5 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR90R3100 EXTRA HP C4 FLR
Hollow shaft diameter	
A1	139 mm (partially occupied by

139 mm (partially occupied by motor cables)

Foundry robots

Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
Compressed air	Free of oil and water
	Class 4 in accordance with ISO 8573-1
Compressed air sup- ply line	Air line in the cable set
Air consumption	0.1 m ³ /h
Air line connection	Push-in fitting for hose, 6 mm
Input pressure	0.1 - 1.2 MPa (1 - 12 bar)
Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)
Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)
Thermal loading	10 s/min at 353 K (180 °C)
Resistance	Increased resistance to dust, lubricants, coolants and water vapor.
Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.
Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.
Other ambient condi- tions	KUKA Roboter GmbH must be consulted if the robot is to be used under other ambient conditions.

KR QUANTEC extra

Ambient condi-	Humidity class (EN 60204)	-
tions	Classification of environmental con- ditions (EN 60721-3-3)	3K3
	Ambient temperature	
	During operation	10 °C to 55 °C (283 K to 328 K)
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)

For operation at low temperatures, it may be necessary to warm up the robot.

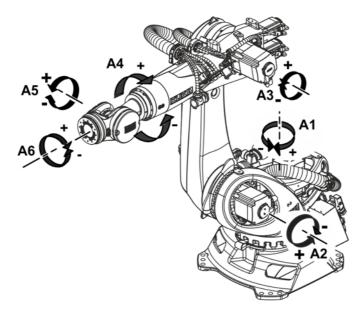
Connecting cables

ca	ble	es	

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends
	[
Cable lengths		
Standard	7 m, 15 m, 25 m, 35 m, 50 m	

Minimum bending radius 5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.23.2 Axis data, KR 90 R3100 extra F-HP

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-148).

4 Technical data KUKA

Fig. 4-148: Direction of rotation of the axes

Mastering position

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °
A5	0 °
A6	0°

Working envelope

The following diagrams (>>> Fig. 4-149) and (>>> Fig. 4-150) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

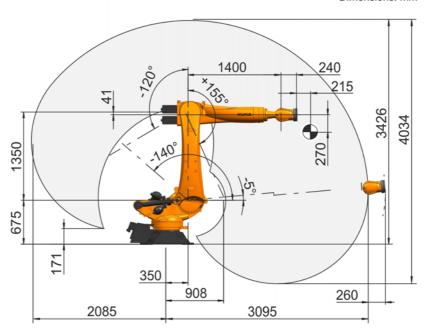
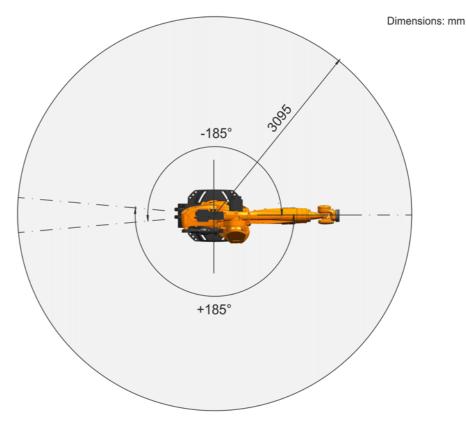



Fig. 4-149: KR 90 R3100 extra F-HP, working envelope, side view

4.23.3 Payloads, KR 90 R3100 extra F-HP

Payloads

Rated payload	90 kg
Rated mass moment of inertia	45 kgm²
Rated total load	-
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	300 kg
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	130 kg
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	150 kg
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

Exceeding the payloads and supplementary loads will re-NOTICE duce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

4 Technical data

κυκα

Load center of gravity

Payload diagram

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

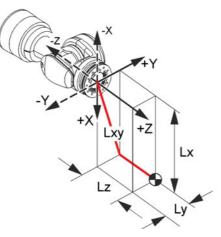
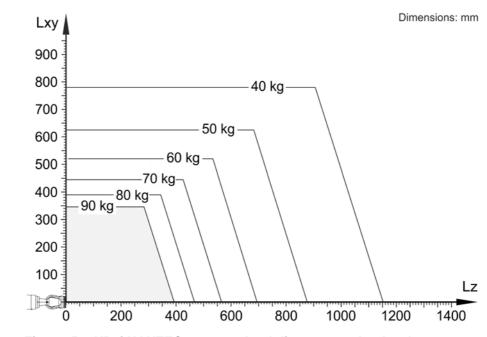
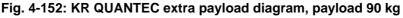




Fig. 4-151: Load center of gravity

This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

In-line wrist

In-line wrist type	ZH 90/120 F-HP
Mounting flange	see drawing

KR QUANTEC extra

Mounting flange

Screw grade	A4-80
Screw size	M10
Number of fastening screws	23
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 H7

The mounting flange is depicted with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

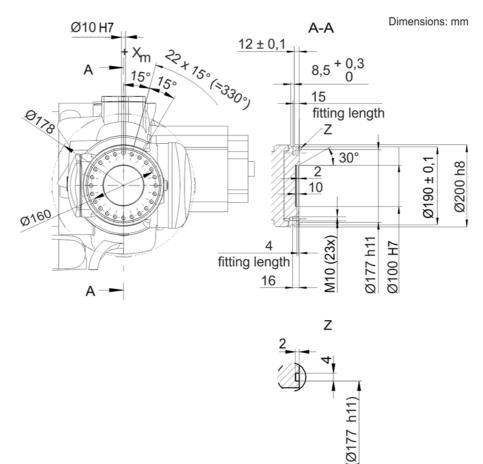
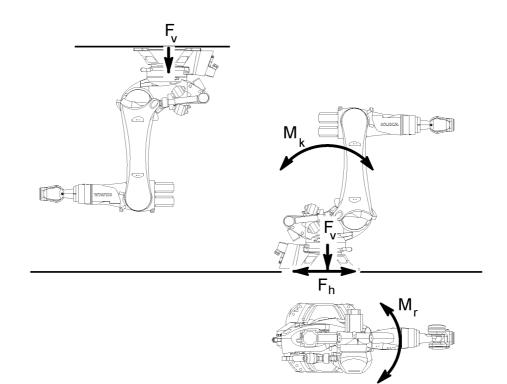



Fig. 4-153: Mounting flange D=160 for F-HP in-line wrist

4.23.4 Loads acting on the foundation, KR 90 R3100 extra F-HP

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-154: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v .

4.24 Technical data, KR 90 R3100 extra C

4.24.1 Basic data, KR 90 R3100 extra C

Basic data

	KR 90 R3100 extra C
Number of axes	6
Number of controlled axes	6
Volume of working envelope	84 m ³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1092 kg
Rated payload	90 kg
Maximum reach	3095 mm
Protection rating	IP65
Protection rating, in-line wrist	IP65
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR90R3100 EXTRA C4 CLG
Hollow shaft diameter	
A1	139 mm (partially occupied by motor cables)

Ambient	condi-
tions	

Humidity class (EN 60204)	-	
Classification of environmental con- ditions (EN 60721-3-3)	3K3	
Ambient temperature		
During operation	10 °C to 55 °C (283 K to 328 K)	
During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up

i the robot.

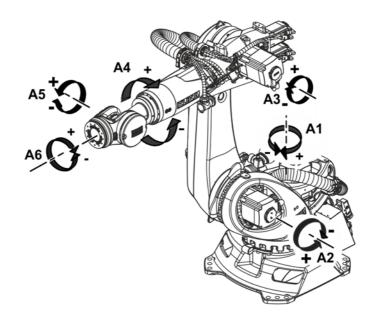
cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bending radius	5x D

For detailed specifications of the connecting cables, see "Description of the connecting cables".


4.24.2 Axis data, KR 90 R3100 extra C

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-155).

Fig. 4-155: Direction of rotation of the axes

Mastering	Mastering position	Mastering position	
position	A1	-20 °	
	A2	-120 °	
	A3	110 °	
	A4	0 °	
	A5	0 °	
	A6	0 °	
Working envelope	The following diagrams (>>> Fig. 4-156) and (>>> Fig. 4-157) show the load center of gravity, shape and size of the working envelope.		

The reference point for the working envelope is the intersection of axis 4 with axis 5.

4 Technical data

KUKA

Dimensions: mm

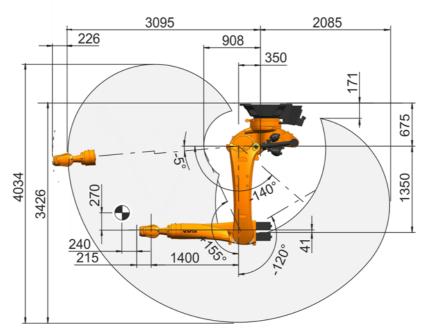


Fig. 4-156: KR 90 R3100 extra C, working envelope, side view

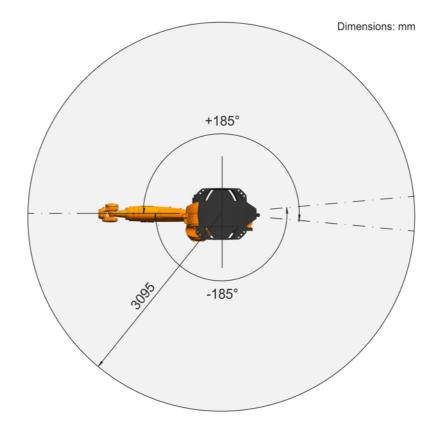


Fig. 4-157: KR 90 R3100 extra C, working envelope, top view

4.24.3 Payloads, KR 90 R3100 extra C

Payloads

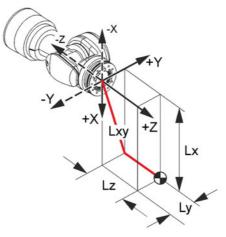
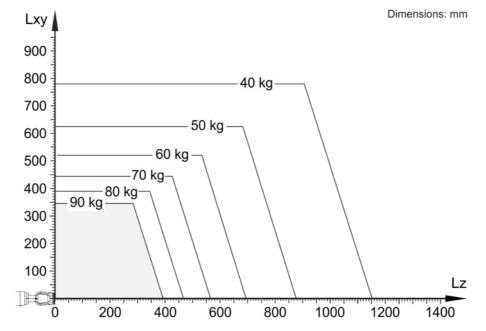
Rated payload	90 kg
Reduced payload	-
Rated mass moment of inertia	45 kgm ²
Rated total load	-

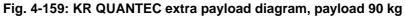
Rated supplementary load, base frame	-	
Maximum supplementary load, base frame	-	
Rated supplementary load, rotating column	-	
Maximum supplementary load, rotating column	300 kg	
Rated supplementary load, link arm	-	
Maximum supplementary load, link arm	130 kg	
Rated supplementary load, arm	50 kg	
Maximum supplementary load, arm	150 kg	
Nominal distance to load center of gravity		
Lxy	270 mm	
Lz	240 mm	

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.


Fig. 4-158: Load center of gravity

4 Technical data

KUKA

Payload diagram

	This loading curve corresponds to the maximum load ca- pacity. Both values (payload and mass moment of iner- tia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accor- dance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!		
In-line wrist	In-line wrist type	ZH 90/120	
	Mounting flange	see drawing	
Mounting flange	Screw grade Screw size Number of fastening screws Clamping length Depth of engagement Locating element	10.9 M10 11 1.5 x nominal diameter min. 12 mm, max. 16 mm 10 H7	

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-160) The symbol X_m indicates the position of the locating element (bushing) in the zero position.

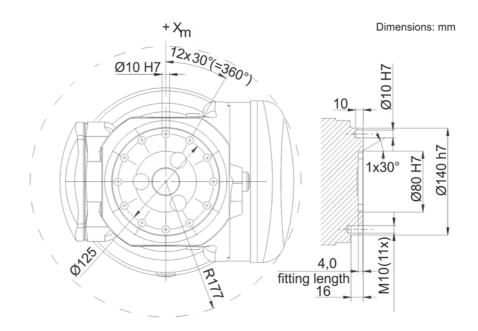
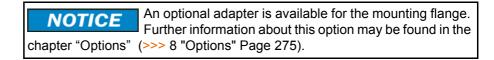
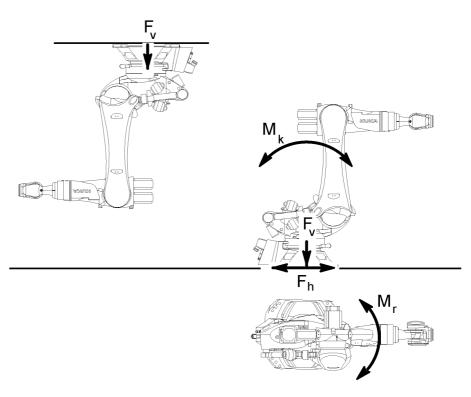




Fig. 4-160: Mounting flange D=125

4.24.4 Loads acting on the foundation, KR 90 R3100 extra C

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-161: Loads acting on the mounting base

Vertical force F(v)	
F(v normal)	19100 N

F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.25 Technical data, KR 90 R3100 extra C-F

4.25.1 Basic data, KR 90 R3100 extra C-F

Basic data

	KR 90 R3100 extra C-F
Number of axes	6
Number of controlled axes	6
Volume of working envelope	84 m³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1092 kg
Rated payload	90 kg
Maximum reach	3095 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR90R3100 EXTRA C4 CLG

	Hollow shaft diameter		
	A1		139 mm (partially occupied by motor cables)
Foundry robots	Overpressure in the arm	0.01 MPa (0.1 bar) ±10%	
	Compressed air	Free of oil and water	
		Class 4 in accordance with ISO 8573-1	
	Compressed air sup- ply line	Air line in th	ne cable set
	Air consumption	0.1 m ³ /h	
	Air line connection	Push-in fitti	ng for hose, 6 mm
	Input pressure	0.1 - 1.2 MI	Pa (1 - 12 bar)
	Pressure regulator	0.005 - 0.07 MPa (0.05 - 0.7 bar)	
	Manometer range	0.0 - 0.1 MPa (0.0 - 1.0 bar)	
	Thermal loading	10 s/min at	353 K (180 °C)
	Resistance	Increased resistance to dust, lubricants, coolants and water vapor.	
	Special paint finish on wrist	Heat-resistant and heat-reflecting silver paint fin- ish on the in-line wrist.	
	Special paint finish on the robot	Special paint finish on the entire robot, and an additional protective clear coat.	
	Other ambient condi- tions		oter GmbH must be consulted if the be used under other ambient condi-
Ambient condi			
Ambient condi-	Humidity class (EN 6020	,	-
tions Classification of environmental con-		3K3	

Ambient condi- tions	Humidity class (EN 60204) Classification of environmental con-	- 3K3	
	ditions (EN 60721-3-3)		
	Ambient temperature		
Î	During operation	10 °C to 55 °C (283 K to 328 K)	
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

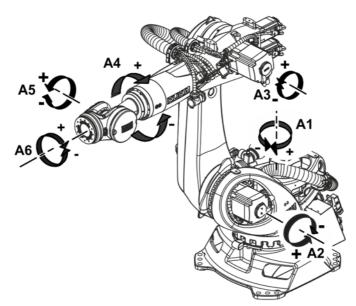
For operation at low temperatures, it may be necessary to warm up the robot.

Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends

4 Technical data KUKA

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bending radius	5x D


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.25.2 Axis data, KR 90 R3100 extra C-F

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-162).

Fig. 4-162: Direction of rotation of the axes

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °

Mastering position

A5	0 °
A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-163) and (>>> Fig. 4-157) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

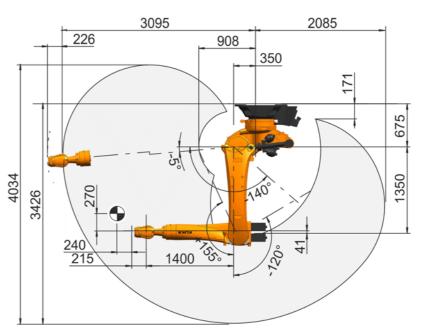
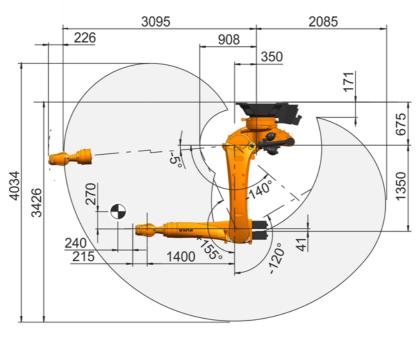



Fig. 4-163: KR 90 R3100 extra C, working envelope, side view

4 Technical data

ΚυκΑ

Dimensions: mm

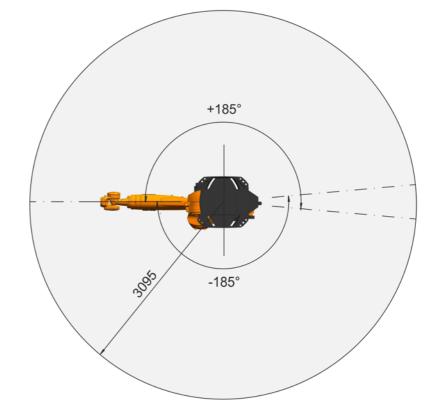


Fig. 4-164: KR 90 R3100 extra C, working envelope

4.25.3 Payloads, KR 90 R3100 extra C-F

Payloads

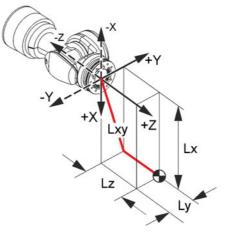
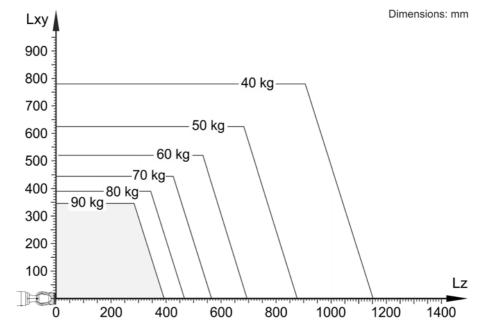
Rated payload	90 kg
Reduced payload	-
Rated mass moment of inertia	45 kgm²
Rated total load	-

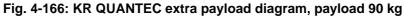
Rated supplementary load, base frame	-
Maximum supplementary load, base frame	-
Rated supplementary load, rotating column	-
Maximum supplementary load, rotating column	-
Rated supplementary load, link arm	-
Maximum supplementary load, link arm	-
Rated supplementary load, arm	50 kg
Maximum supplementary load, arm	-
Nominal distance to load center of gravity	
Lxy	270 mm
Lz	240 mm

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.


Fig. 4-165: Load center of gravity

4 Technical data

KUKA

Payload diagram

	NOTICE This loading curve corresponds to the maximum load ca- pacity. Both values (payload and mass moment of iner- tia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accor- dance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!		
In-line wrist	In-line wrist type	ZH 90/120 F	
	Mounting flange	see drawing	
Mounting flange	Screw grade	10.9	
	Screw size	M10	
	Number of fastening screws	11	
	Clamping length	1.5 x nominal diameter	
	Depth of engagement	min. 12 mm, max. 16 mm	
	Locating element	10 H7	

The mounting flange is depicted with axis 6 in the zero position (>>> Fig. 4-167) The symbol X_m indicates the position of the locating element (bushing) in the zero position.

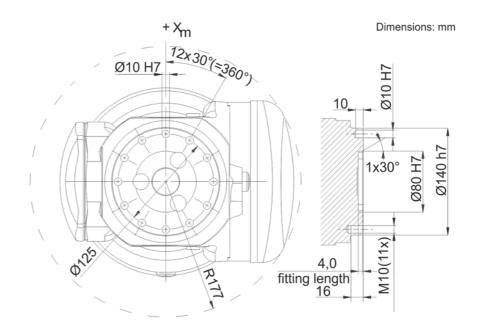
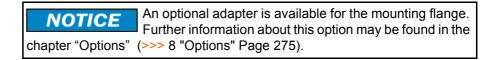
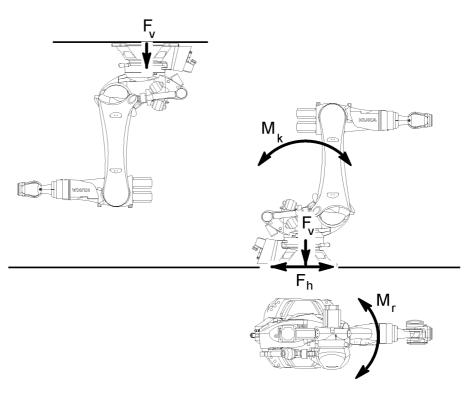




Fig. 4-167: Mounting flange D=125

4.25.4 Loads acting on the foundation, KR 90 R3100 extra C-F

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

Fig. 4-168: Loads acting on the mounting base

Vertical force F(v)	
F(v normal)	19100 N

F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_{v} .

4.26 Technical data, KR 90 R3100 extra C-F-HP

4.26.1 Basic data, KR 90 R3100 extra C-F-HP

Basic data

	KR 90 R3100 extra C-F-HP
Number of axes	6
Number of controlled axes	6
Volume of working envelope	84 m³
Pose repeatability (ISO 9283)	± 0.06 mm
Weight	approx. 1084 kg
Rated payload	90 kg
Maximum reach	3095 mm
Protection rating	IP65
Protection rating, in-line wrist	IP67
Sound level	< 75 dB (A)
Mounting position	Ceiling
Footprint	830 mm x 830 mm
Permissible angle of inclination	≤ 0 °
Default color	Base frame: black (RAL 9005); Moving parts: KUKA orange 2567
Controller	KR C4
Transformation name	KR C4: KR90R3100 EXTRA HP C4 CLG

	Hollow shaft diameter		
	A1		139 mm (partially occupied by motor cables)
Foundry robots	Overpressure in the arm	0.01 MPa (0.1 bar) ±10%
	Compressed air	Free of oil a	and water
		Class 4 in a	accordance with ISO 8573-1
	Compressed air sup- ply line	Air line in th	ne cable set
	Air consumption	0.1 m ³ /h	
	Air line connection	Push-in fitti	ng for hose, 6 mm
	Input pressure	0.1 - 1.2 Mi	Pa (1 - 12 bar)
	Pressure regulator	0.005 - 0.07	7 MPa (0.05 - 0.7 bar)
	Manometer range 0.0 - 0.1 MPa (0.0 - 1.0 bar)		Pa (0.0 - 1.0 bar)
	Thermal loading	10 s/min at	353 K (180 °C)
	Resistance	Increased r and water v	esistance to dust, lubricants, coolants /apor.
	Special paint finish on wrist	Heat-resistation in the interview of the second sec	ant and heat-reflecting silver paint fin- n-line wrist.
	Special paint finish on the robot		nt finish on the entire robot, and an protective clear coat.
	Other ambient condi- tions		oter GmbH must be consulted if the be used under other ambient condi-
Ambienteendi			·1
Ambient condi-	Humidity class (EN 6020		-
tions	Classification of environmental con- 3K3		3K3

Ambient condi- tions	Humidity class (EN 60204) Classification of environmental con- ditions (EN 60721-3-3)	- 3K3	
	Ambient temperature		
	During operation	10 °C to 55 °C (283 K to 328 K)	
	During storage/transportation	-40 °C to 60 °C (233 K to 333 K)	

For operation at low temperatures, it may be necessary to warm up the robot.

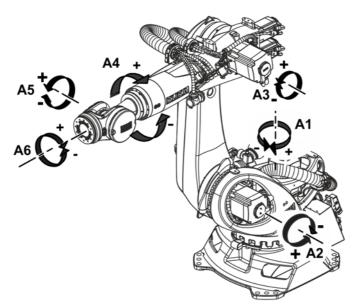
Connecting cables

Cable designation	Connector designa- tion robot controller - ro- bot	Interface with robot
Motor cable	X20 - X30	Harting connectors at both ends
Data cable	X21 - X31	Rectangular connec- tor at both ends
Ground conductor / equipotential bonding 16 mm ² (can be ordered as an option)		M8 ring cable lug at both ends

Issued: 01.09.2016 Version: Spez KR QUANTEC extra V8

4 Technical data KUKA

Cable lengths	
Standard	7 m, 15 m, 25 m, 35 m, 50 m
Minimum bending radius	5x D


For detailed specifications of the connecting cables, see "Description of the connecting cables".

4.26.2 Axis data, KR 90 R3100 extra C-F-HP

Axis data

Motion range		
A1	±185 °	
A2	-140 ° / -5 °	
A3	-120 ° / 155 °	
A4	±350 °	
A5	±125 °	
A6	±350 °	
Speed with rated payload		
A1	123 °/s	
A2	115 °/s	
A3	120 °/s	
A4	292 °/s	
A5	258 °/s	
A6	284 °/s	

The direction of motion and the arrangement of the individual axes may be noted from the diagram (>>> Fig. 4-169).

Fig. 4-169: Direction of rotation of the axes

Mastering position	
A1	-20 °
A2	-120 °
A3	110 °
A4	0 °

Mastering position

A5	0 °
A6	0 °

Working envelope

The following diagrams (>>> Fig. 4-170) and (>>> Fig. 4-171) show the load center of gravity, shape and size of the working envelope.

The reference point for the working envelope is the intersection of axis 4 with axis 5.

Dimensions: mm

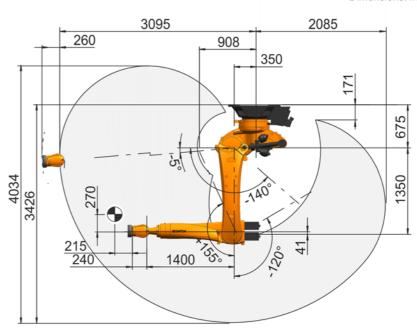


Fig. 4-170: KR 90 R3100 extra C-F-HP, working envelope, side view

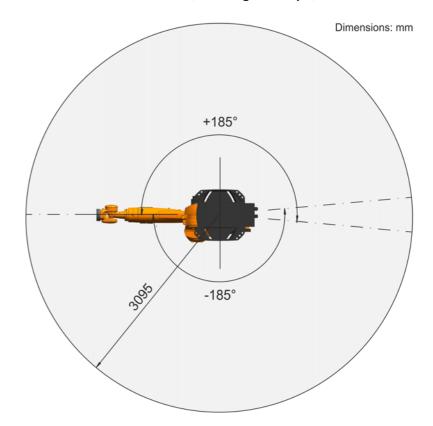


Fig. 4-171: KR 90 R3100 extra C-F-HP, working envelope, top view

Κυκα

4.26.3 Payloads, KR 90 R3100 extra C-F-HP

Payloads

Rated payload	90 kg	
Reduced payload	-	
Rated mass moment of inertia	45 kgm²	
Rated total load	-	
Rated supplementary load, base frame	-	
Maximum supplementary load, base frame	-	
Rated supplementary load, rotating column	-	
Maximum supplementary load, rotating column	300 kg	
Rated supplementary load, link arm	-	
Maximum supplementary load, link arm	130 kg	
Rated supplementary load, arm	50 kg	
Maximum supplementary load, arm	150 kg	
Nominal distance to load center of gravity		
Lxy	270 mm	
Lz	240 mm	

NOTICE Exceeding the payloads and supplementary loads will reduce the service life of the robot and overload the motors and the gears. We recommend always testing the specific application with KUKA.Load. In cases where individual values are exceeded, KUKA Roboter GmbH must be consulted.

Load center of gravity

For all payloads, the load center of gravity refers to the distance from the face of the mounting flange on axis 6. Refer to the payload diagram for the nominal distance.

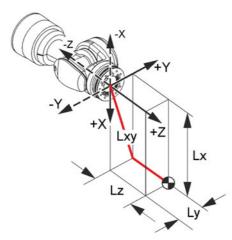


Fig. 4-172: Load center of gravity

Payload diagram

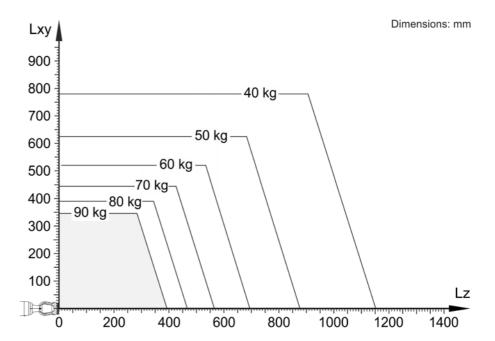


Fig. 4-173: KR QUANTEC extra payload diagram, payload 90 kg

NOTICE This loading curve corresponds to the maximum load capacity. Both values (payload and mass moment of inertia) must be checked in all cases. Exceeding this capacity will reduce the service life of the robot and overload the motors and the gears; in any such case the KUKA Roboter GmbH must be consulted beforehand. The values determined here are necessary for planning the robot application. For commissioning the robot, additional input data are required in accordance with the operating and programming instructions of the KUKA System Software. The mass inertia must be verified using KUKA.Load. It is imperative for the

I he mass inertia must be verified using KUKA.Load. It is imperative for the load data to be entered in the robot controller!

In-line wrist	In-line wrist type	ZH 90/120 F-HP
	Mounting flange	see drawing

Mounting flange	Screw grade	A4-80
	Screw size	M10
	Number of fastening screws	23
	Clamping length	1.5 x nominal diameter
	Depth of engagement	min. 12 mm, max. 16 mm
	Locating element	10 H7

The mounting flange is depicted with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

4 Technical data KUKA

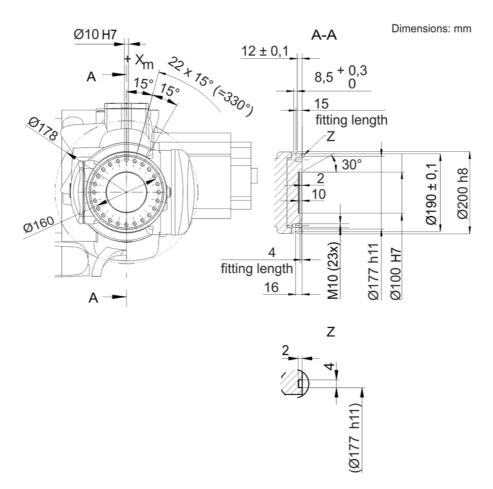
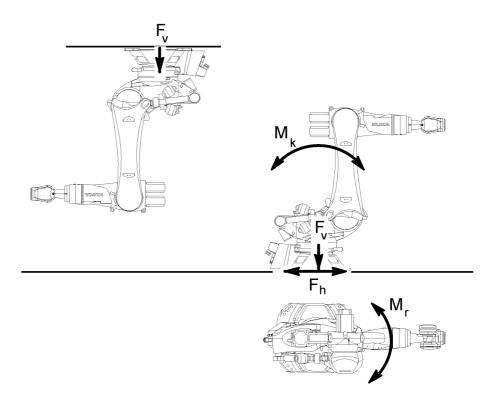



Fig. 4-174: Mounting flange D=160 for F-HP in-line wrist

4.26.4 Loads acting on the foundation, KR 90 R3100 extra C-F-HP

Foundation loads The specified forces and moments already include the payload and the inertia force (weight) of the robot.

KUKA KR QUANTEC extra

Fig. 4-175: Loads acting on the mounting base

Vertical force F(v)		
F(v normal)	19100 N	
F(v max)	24000 N	
Horizontal force F(h)		
F(h normal)	9200 N	
F(h max)	16000 N	
Tilting moment M(k)		
M(k normal)	24000 Nm	
M(k max)	49000 Nm	
Torque about axis 1 M(r)		
M(r normal)	10200 Nm	
M(r max)	35000 Nm	

Vertical force F(v), horizontal force F(h), tilting torque M(k), torque about axis 1 M(r)

WARNING Normal loads and maximum loads for the foundations are specified in the table.

The maximum loads must be referred to when dimensioning the foundations and must be adhered to for safety reasons. Failure to observe this can result in personal injury and damage to property.

The normal loads are average expected foundation loads. The actual loads are dependent on the program and on the robot loads and may therefore be greater or less than the normal loads.

The supplementary loads (A1, A2 and A3) are not taken into consideration in the calculation of the foundation load. These supplementary loads must be taken into consideration for F_v .

4.27 Supplementary load

Description

The robot can carry supplementary loads on the rotating column, link arm and arm. When mounting the supplementary loads, be careful to observe the maximum permissible total load. The dimensions and positions of the installation options can be seen in the following diagram.

Dimensions: mm

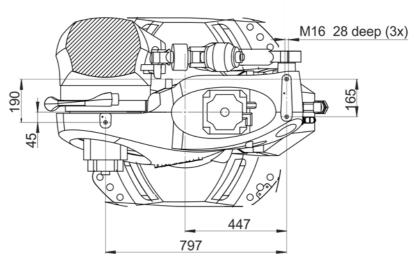


Fig. 4-176: Supplementary load, rotating column

Dimensions: mm

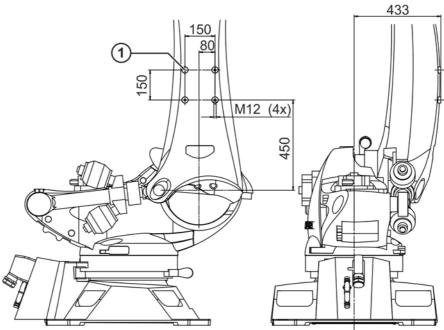
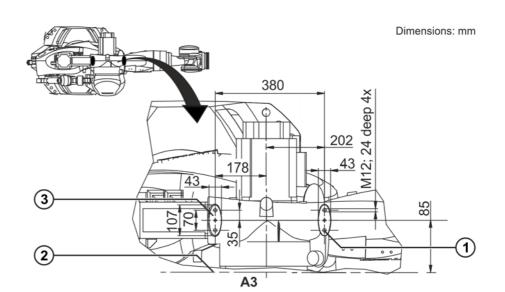
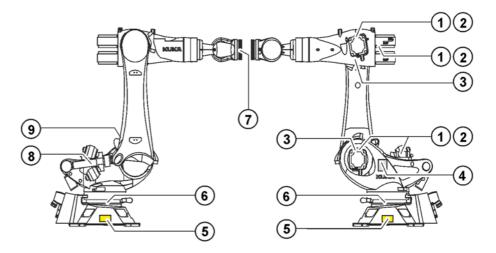
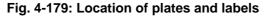
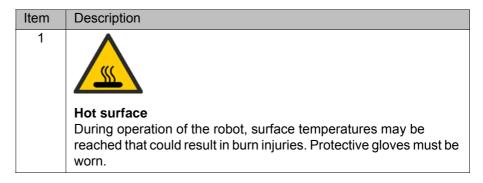



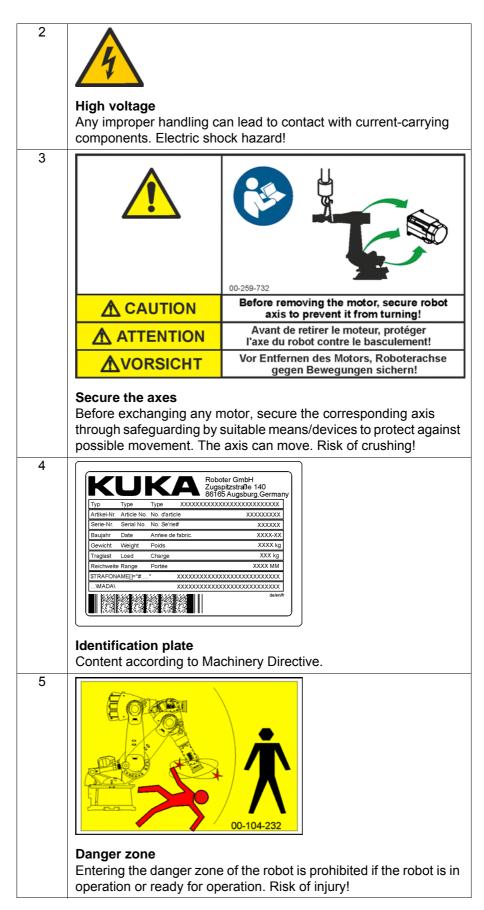
Fig. 4-177: Supplementary load, link arm

1 Mounting surface

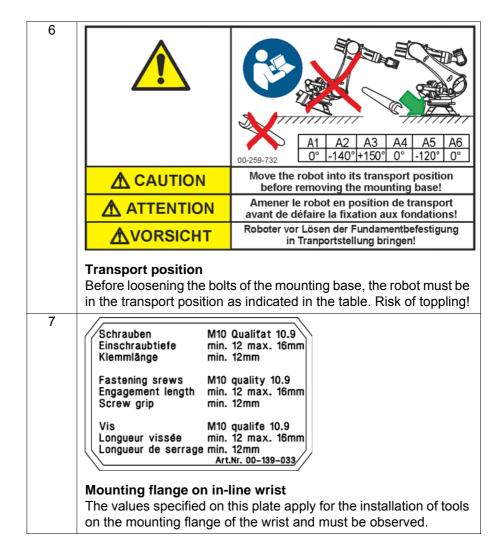

Fig. 4-178: Supplementary load, arm

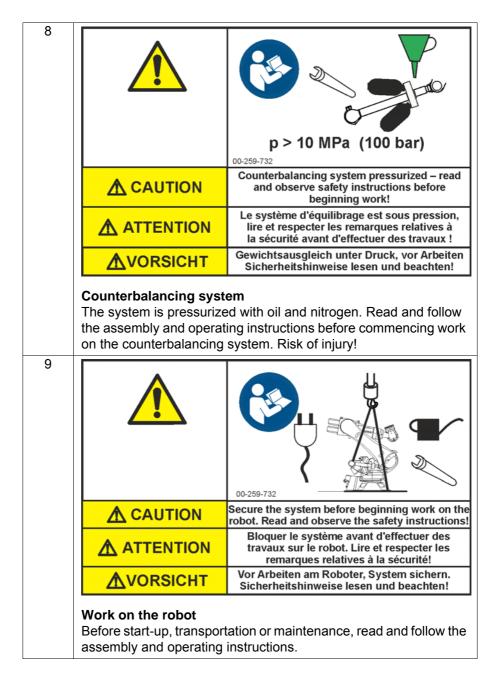

- Fastening thread
- 3 Mounting surface
- 2 Interference contour, arm


4.28 Plates and labels


1

Plates and labels The following plates and labels (>>> Fig. 4-179) are attached to the robot. They must not be removed or rendered illegible. Illegible plates and labels must be replaced.





ΚυκΑ

4.29 REACH duty to communicate information acc. to Art. 33 of Regulation (EC) 1907/2006

On the basis of the information provided by our suppliers, this product and its components contain no substances included on the Candidate List of Substances of Very High Concern (SVHCs) in a concentration exceeding 0.1 percent by mass.

4.30 Stopping distances and times

4.30.1 General information

Information concerning the data:

- The stopping distance is the angle traveled by the robot from the moment the stop signal is triggered until the robot comes to a complete standstill.
- The stopping time is the time that elapses from the moment the stop signal is triggered until the robot comes to a complete standstill.

- The data are given for the main axes A1, A2 and A3. The main axes are the axes with the greatest deflection.
- Superposed axis motions can result in longer stopping distances.
- Stopping distances and stopping times in accordance with DIN EN ISO 10218-1, Annex B.
- Stop categories:
 - Stop category 0 » STOP 0
 - Stop category 1 » STOP 1
 - according to IEC 60204-1
- The values specified for Stop 0 are guide values determined by means of tests and simulation. They are average values which conform to the requirements of DIN EN ISO 10218-1. The actual stopping distances and stopping times may differ due to internal and external influences on the braking torque. It is therefore advisable to determine the exact stopping distances and stopping times where necessary under the real conditions of the actual robot application.
- Measuring technique

The stopping distances were measured using the robot-internal measuring technique.

The wear on the brakes varies depending on the operating mode, robot application and the number of STOP 0 stops triggered. It is therefore advisable to check the stopping distance at least once a year.

4.30.2 Terms used

Term	Description
m	Mass of the rated load and the supplementary load on the arm.
Phi	Angle of rotation (°) about the corresponding axis. This value can be entered in the controller via the KCP/smartPAD and can be displayed on the KCP/smartPAD.
POV	Program override (%) = velocity of the robot motion. This value can be entered in the controller via the KCP/smartPAD and can be displayed on the KCP/smartPAD.
Extension	Distance (I in %) (>>> Fig. 4-180) between axis 1 and the intersection of axes 4 and 5. With parallelogram robots, the distance between axis 1 and the intersection of axis 6 and the mounting flange.
КСР	KUKA Control Panel
	Teach pendant for the KR C2/KR C2 edition2005
	The KCP has all the operator control and display func- tions required for operating and programming the industrial robot.
smartPAD	Teach pendant for the KR C4
	The smartPAD has all the operator control and display functions required for operating and programming the industrial robot.

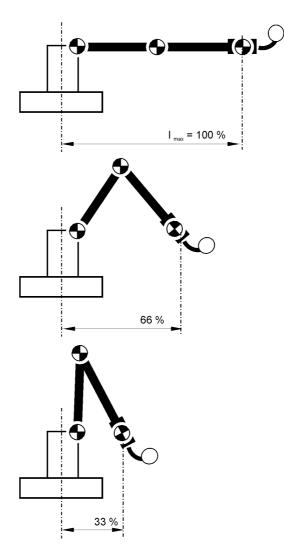


Fig. 4-180: Extension

4.30.3 Stopping distances and times, KR 210 R2700 extra

4.30.3.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

	Stopping distance (°)	Stopping time (s)
Axis 1	47.1	0.88
Axis 2	21.6	0.43
Axis 3	20.4	0.31

ΚυκΑ

4.30.3.2 Stopping distances and stopping times for STOP 1, axis 1

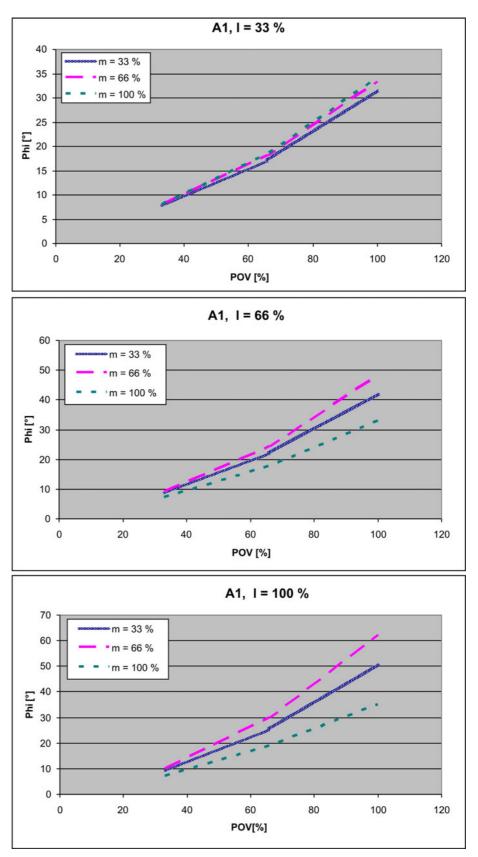


Fig. 4-181: Stopping distances for STOP 1, axis 1

4 Technical data

Κυκα



Fig. 4-182: Stopping times for STOP 1, axis 1

ΚυκΑ

4.30.3.3 Stopping distances and stopping times for STOP 1, axis 2

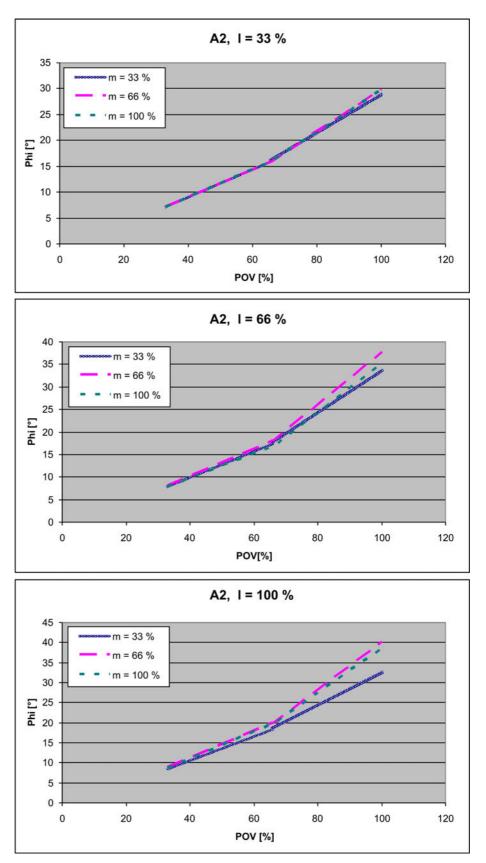


Fig. 4-183: Stopping distances for STOP 1, axis 2

4 Technical data

ΚυκΑ

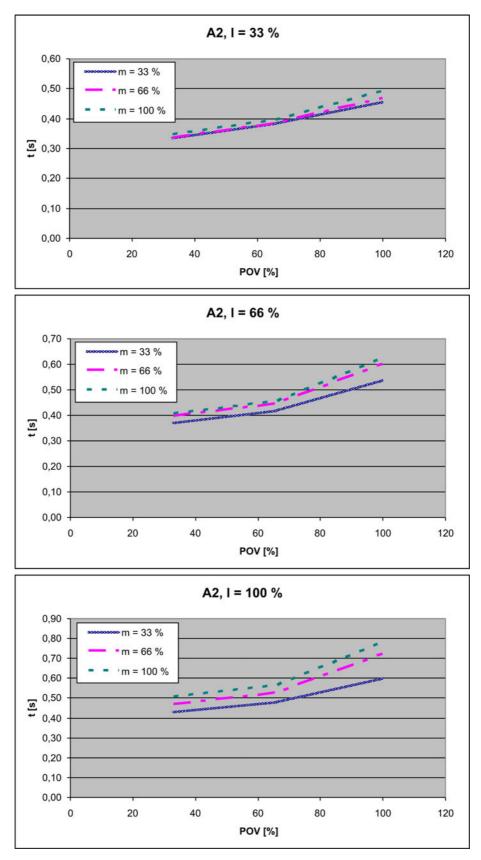


Fig. 4-184: Stopping times for STOP 1, axis 2

4.30.3.4 Stopping distances and stopping times for STOP 1, axis 3

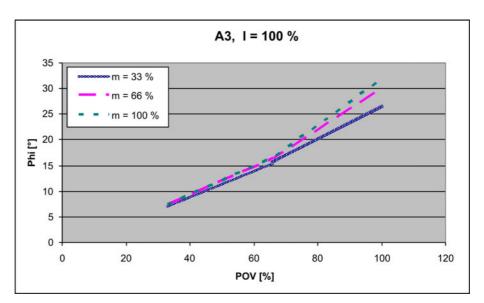


Fig. 4-185: Stopping distances for STOP 1, axis 3

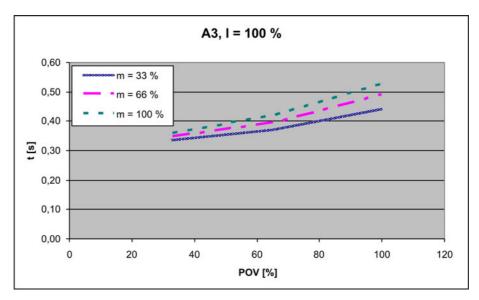
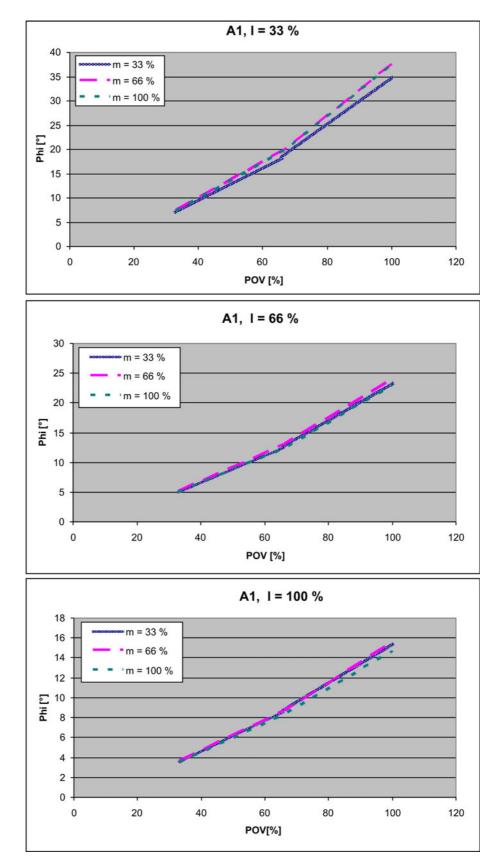


Fig. 4-186: Stopping times for STOP 1, axis 3

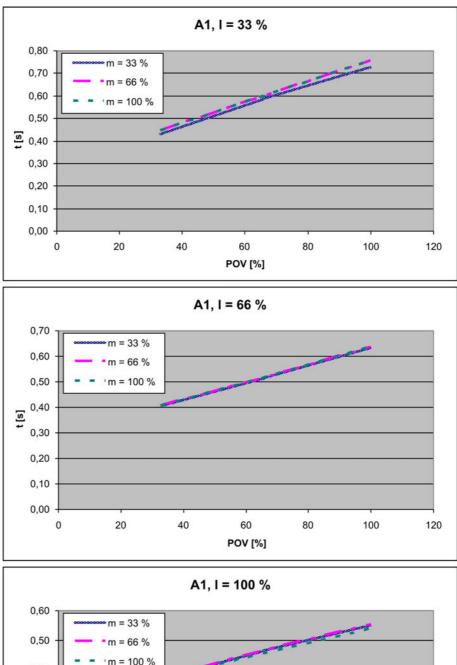
4.30.4 Stopping distances and times, KR 180 R2500 extra


4.30.4.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

	Stopping distance (°)	Stopping time (s)
Axis 1	47.1	0.88
Axis 2	21.6	0.43
Axis 3	20.4	0.31



4.30.4.2 Stopping distances and stopping times for STOP 1, axis 1

Fig. 4-187: Stopping distances for STOP 1, axis 1

ΚυκΑ

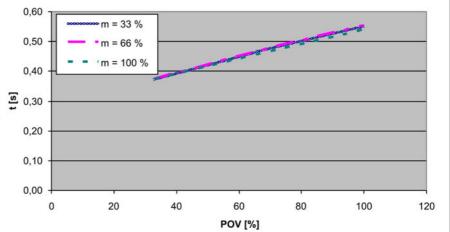
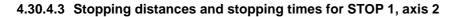



Fig. 4-188: Stopping times for STOP 1, axis 1

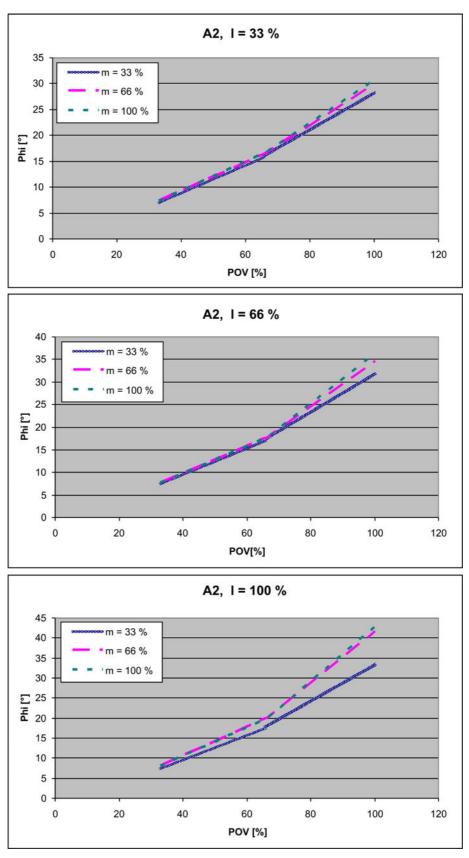
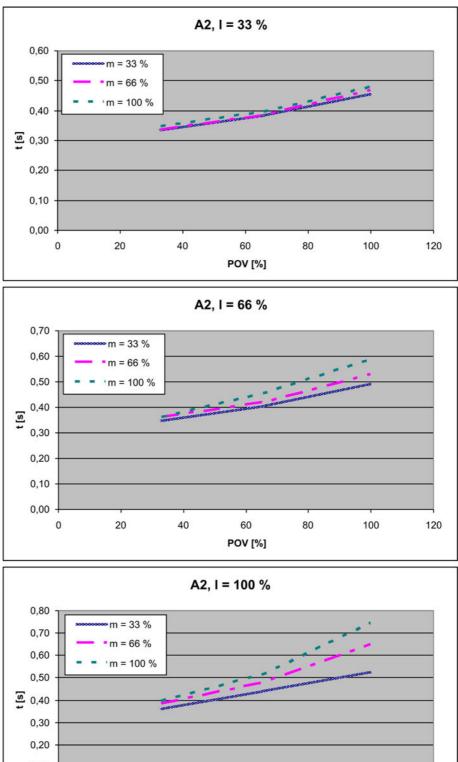



Fig. 4-189: Stopping distances for STOP 1, axis 2

ΚυκΑ

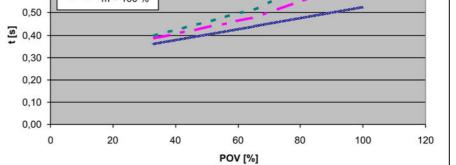


Fig. 4-190: Stopping times for STOP 1, axis 2

4.30.4.4 Stopping distances and stopping times for STOP 1, axis 3

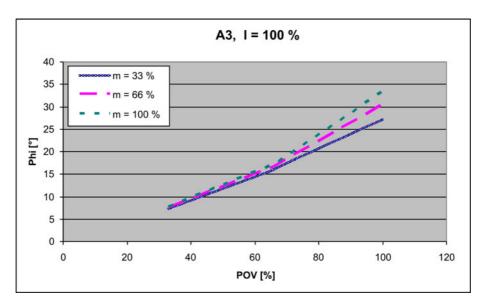


Fig. 4-191: Stopping distances for STOP 1, axis 3

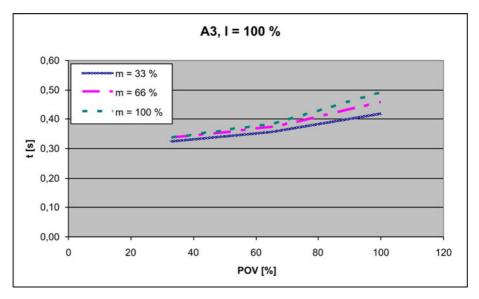


Fig. 4-192: Stopping times for STOP 1, axis 3

4.30.5 Stopping distances and times, KR 180 R2500 extra C

4.30.5.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

The table shows the stopping distances and stopping times after a STOP 0 (category 0 stop) is triggered. The values refer to the following configuration:

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

	Stopping distance (°)	Stopping time (s)
Axis 1	47.1	0.88
Axis 2	21.6	0.43
Axis 3	20.4	0.31

4.30.5.2 Stopping distances and stopping times for STOP 1, axis 1

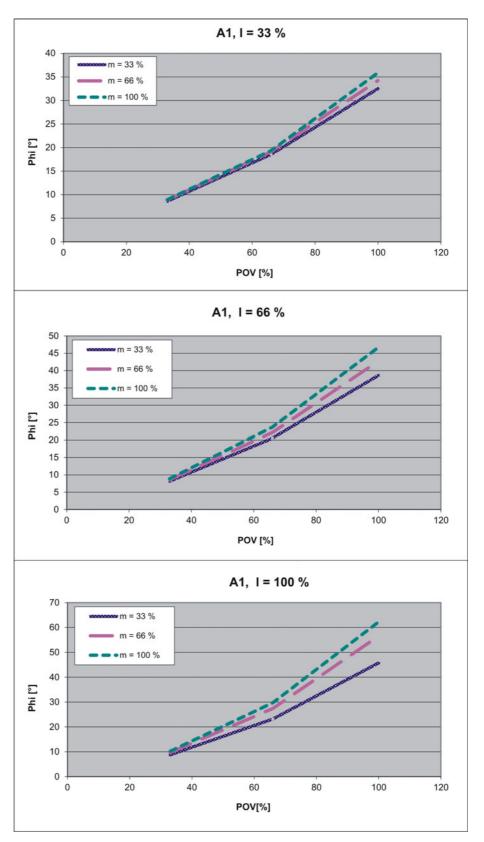


Fig. 4-193: Stopping distances for STOP 1, axis 1

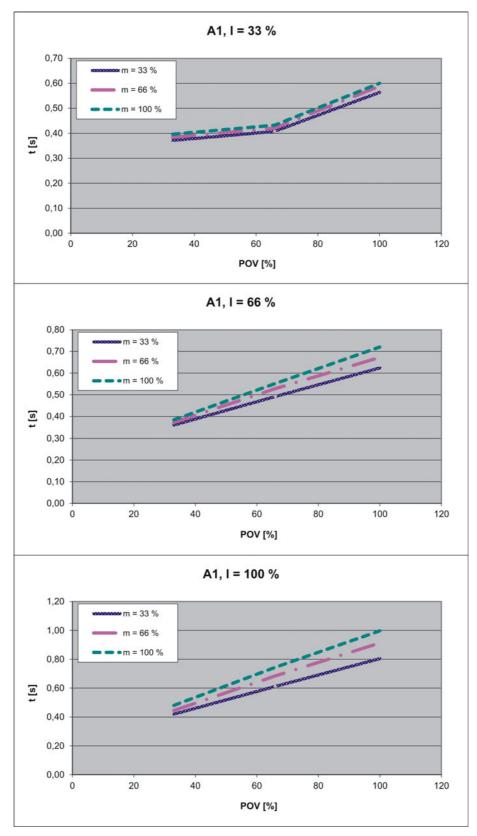


Fig. 4-194: Stopping times for STOP 1, axis 1

4.30.5.3 Stopping distances and stopping times for STOP 1, axis 2

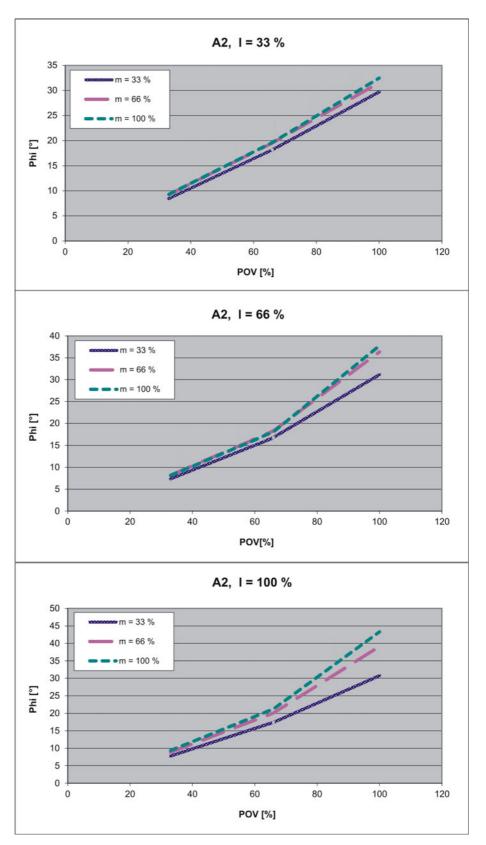
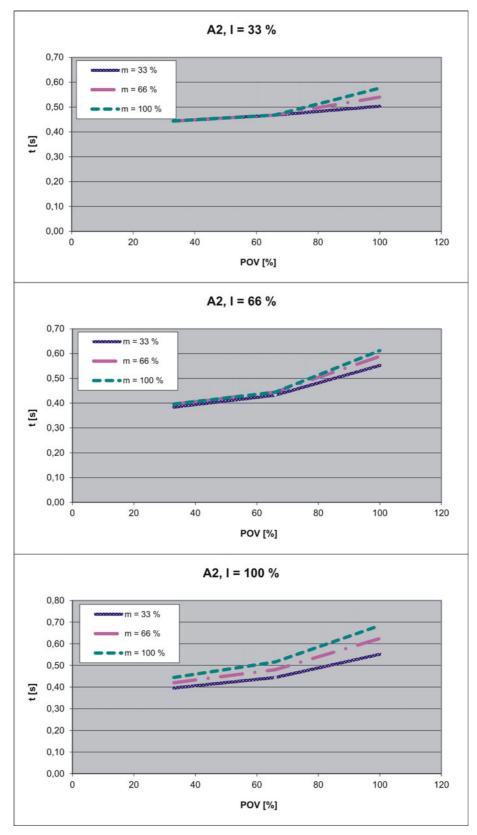
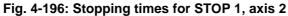




Fig. 4-195: Stopping distances for STOP 1, axis 2

4.30.5.4 Stopping distances and stopping times for STOP 1, axis 3

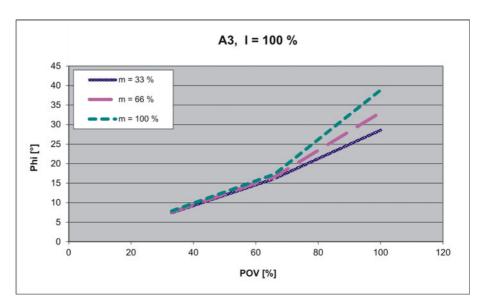


Fig. 4-197: Stopping distances for STOP 1, axis 3

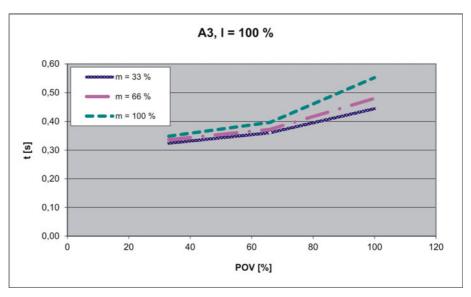
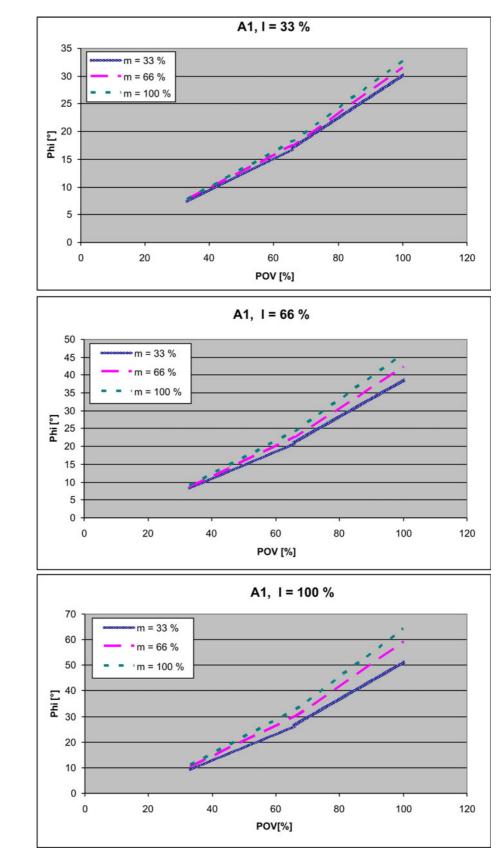


Fig. 4-198: Stopping times for STOP 1, axis 3


4.30.6 Stopping distances and times, KR 150 R2700 extra

4.30.6.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

	Stopping distance (°)	Stopping time (s)
Axis 1	47.1	0.88
Axis 2	21.6	0.43
Axis 3	20.4	0.31

4.30.6.2 Stopping distances and stopping times for STOP 1, axis 1

Fig. 4-199: Stopping distances for STOP 1, axis 1

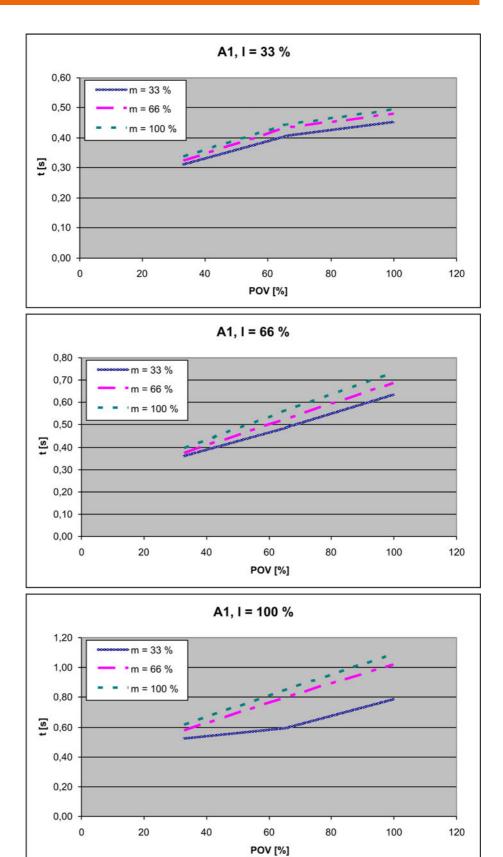


Fig. 4-200: Stopping times for STOP 1, axis 1

4.30.6.3 Stopping distances and stopping times for STOP 1, axis 2

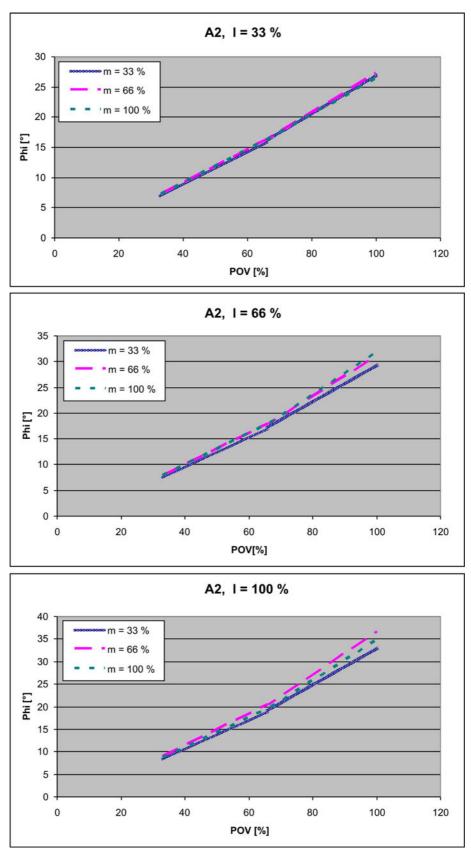
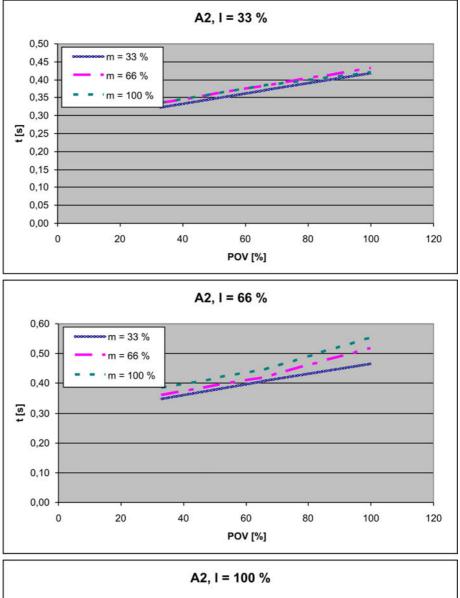



Fig. 4-201: Stopping distances for STOP 1, axis 2

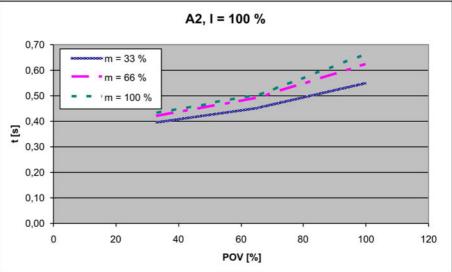


Fig. 4-202: Stopping times for STOP 1, axis 2

4.30.6.4 Stopping distances and stopping times for STOP 1, axis 3

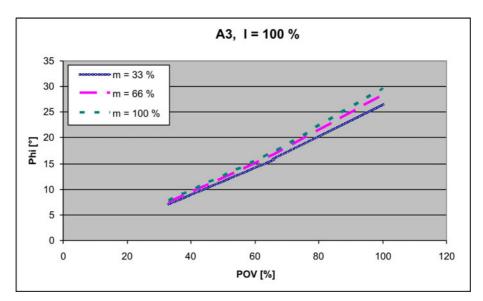


Fig. 4-203: Stopping distances for STOP 1, axis 3

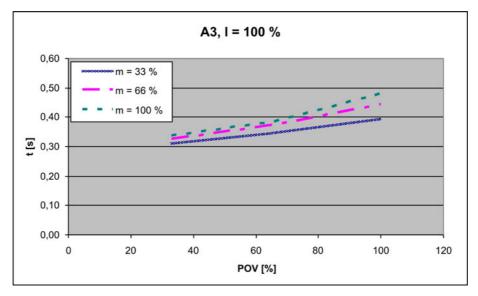


Fig. 4-204: Stopping times for STOP 1, axis 3

4.30.7 Stopping distances and times, KR 150 R2700 extra C

4.30.7.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

	Stopping distance (°)	Stopping time (s)
Axis 1	47.1	0.88
Axis 2	21.6	0.43
Axis 3	20.4	0.31

4.30.7.2 Stopping distances and stopping times for STOP 1, axis 1

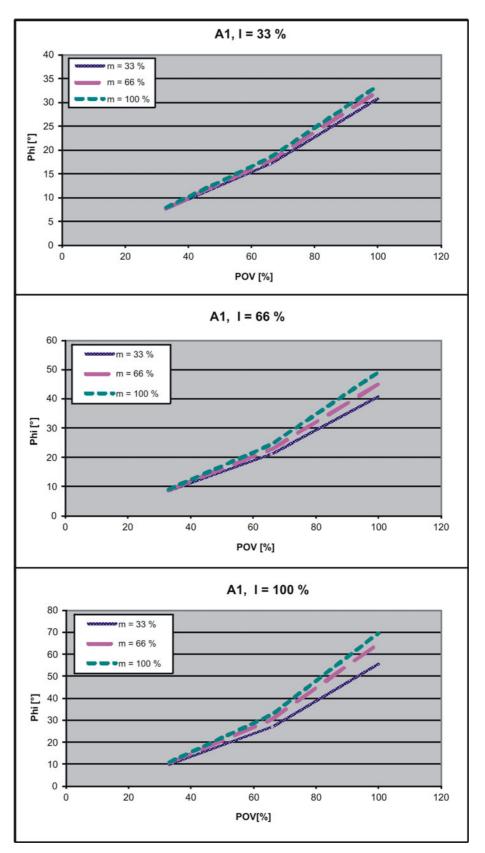


Fig. 4-205: Stopping distances for STOP 1, axis 1

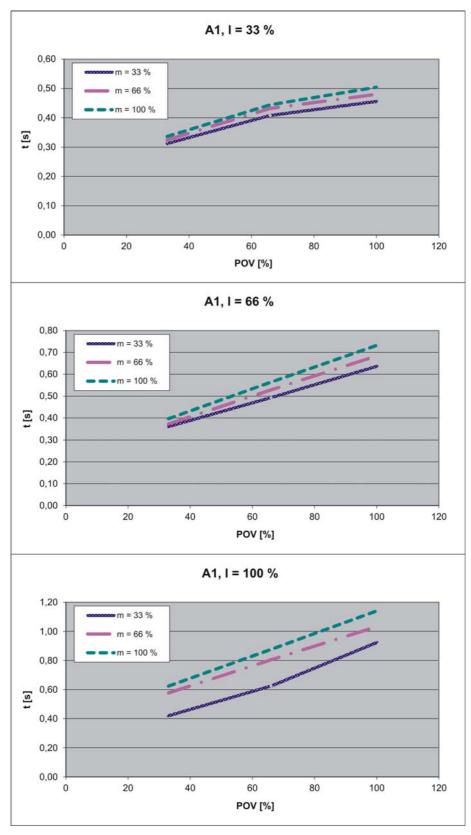


Fig. 4-206: Stopping times for STOP 1, axis 1

4.30.7.3 Stopping distances and stopping times for STOP 1, axis 2

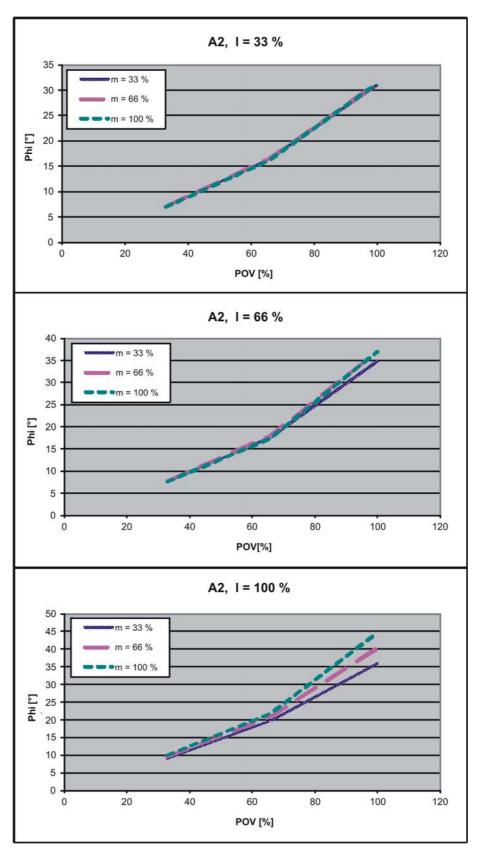


Fig. 4-207: Stopping distances for STOP 1, axis 2

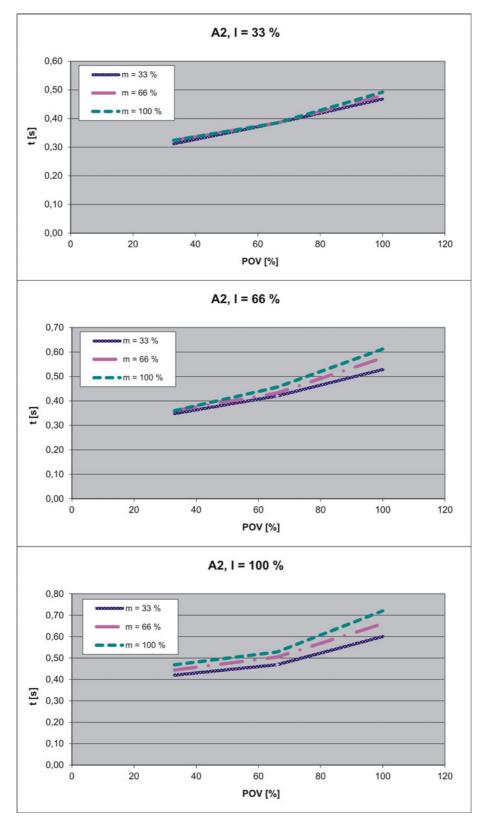


Fig. 4-208: Stopping times for STOP 1, axis 2

4.30.7.4 Stopping distances and stopping times for STOP 1, axis 3

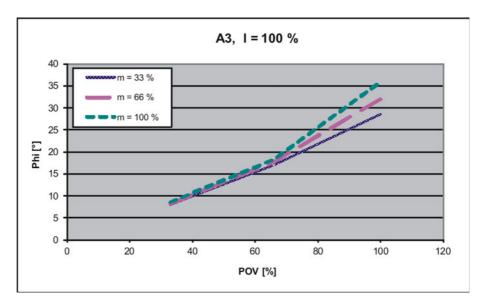


Fig. 4-210: Stopping times for STOP 1, axis 3

4.30.8 Stopping distances and times, KR 120 R2900 extra

4.30.8.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

	Stopping distance (°)	Stopping time (s)
Axis 1	47.1	0.88
Axis 2	21.6	0.43
Axis 3	20.4	0.31

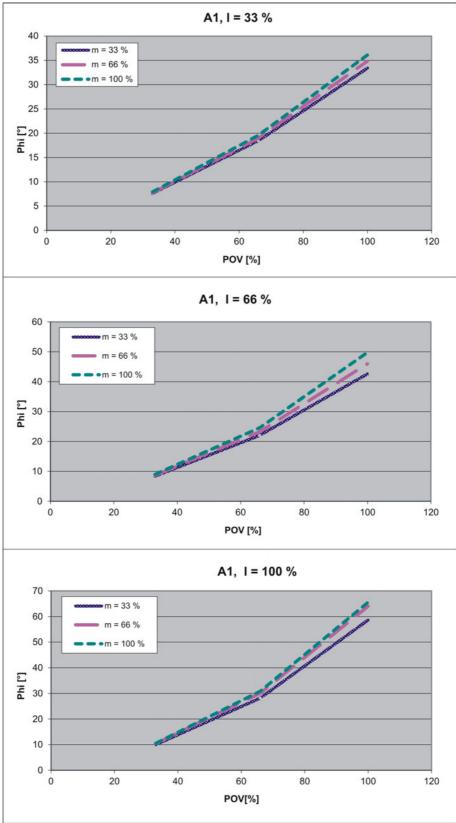


Fig. 4-211: Stopping distances for STOP 1, axis 1

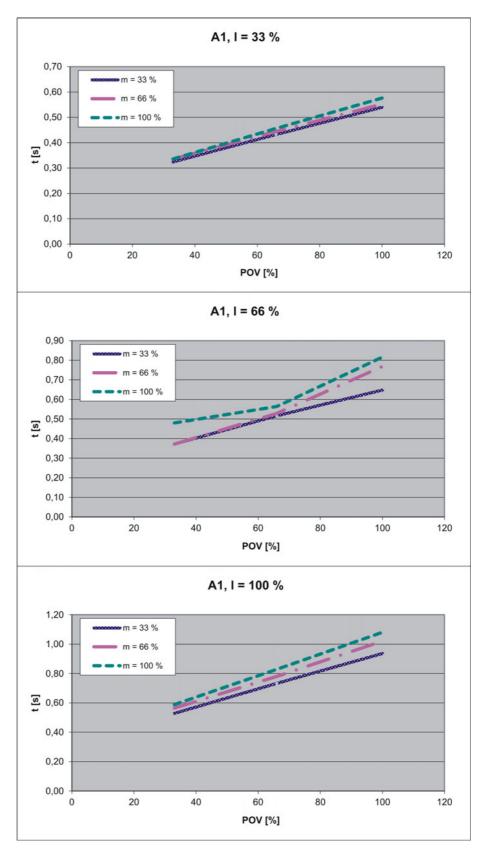
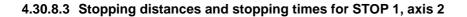



Fig. 4-212: Stopping times for STOP 1, axis 1

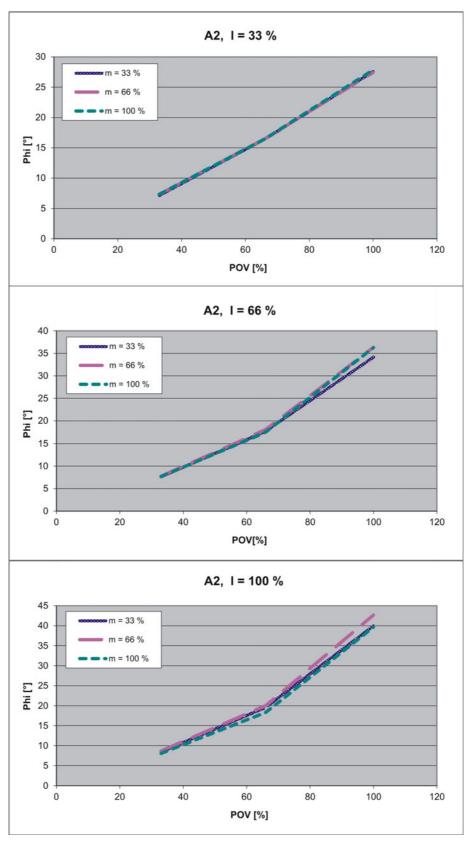


Fig. 4-213: Stopping distances for STOP 1, axis 2

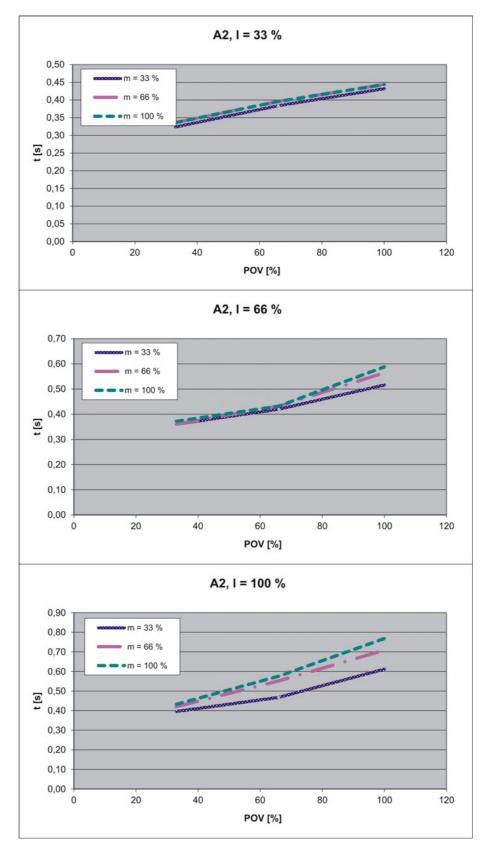


Fig. 4-214: Stopping times for STOP 1, axis 2

Κυκα

4.30.8.4 Stopping distances and stopping times for STOP 1, axis 3

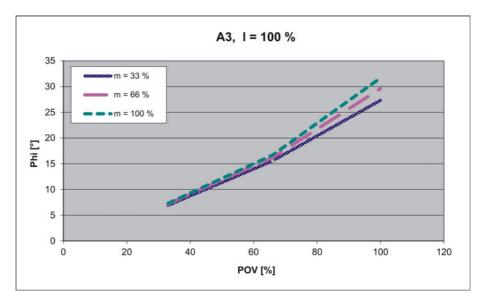


Fig. 4-215: Stopping distances for STOP 1, axis 3

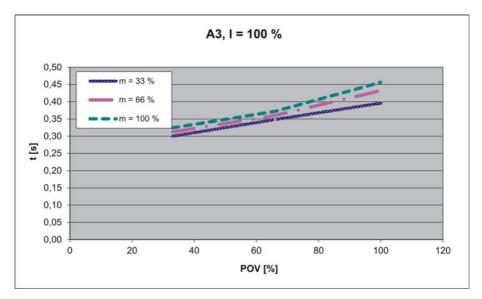


Fig. 4-216: Stopping times for STOP 1, axis 3

4.30.9 Stopping distances and times, KR 120 R2900 extra C

4.30.9.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

	Stopping distance (°)	Stopping time (s)
Axis 1	47.1	0.88
Axis 2	21.6	0.43
Axis 3	20.4	0.31

4.30.9.2 Stopping distances and stopping times for STOP 1, axis 1

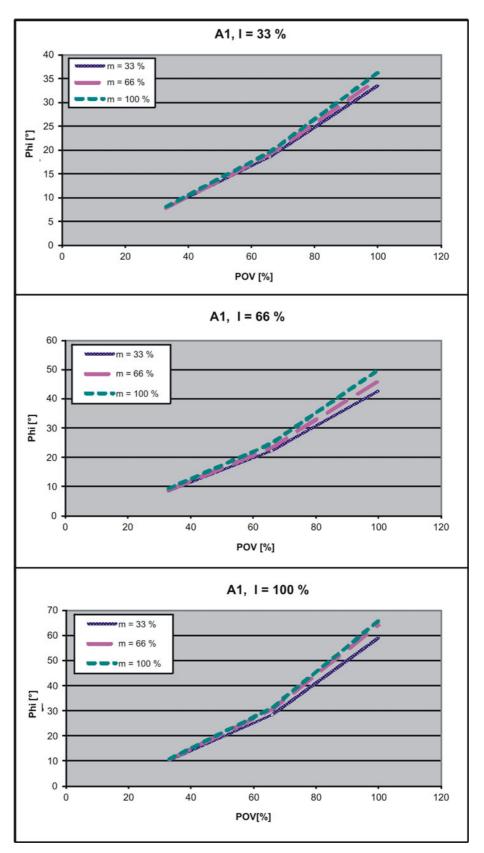


Fig. 4-217: Stopping distances for STOP 1, axis 1

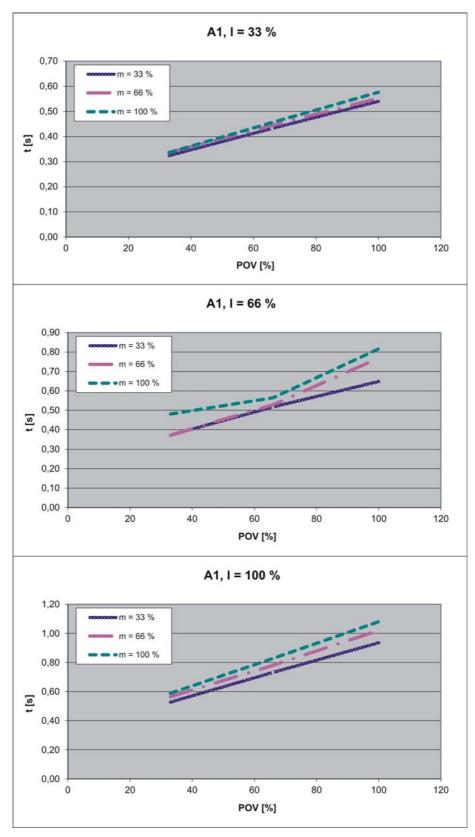


Fig. 4-218: Stopping times for STOP 1, axis 1

4.30.9.3 Stopping distances and stopping times for STOP 1, axis 2

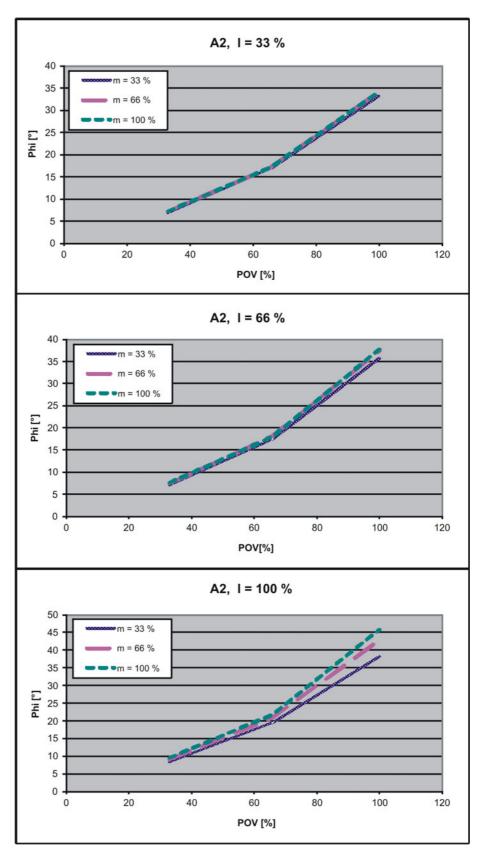


Fig. 4-219: Stopping distances for STOP 1, axis 2

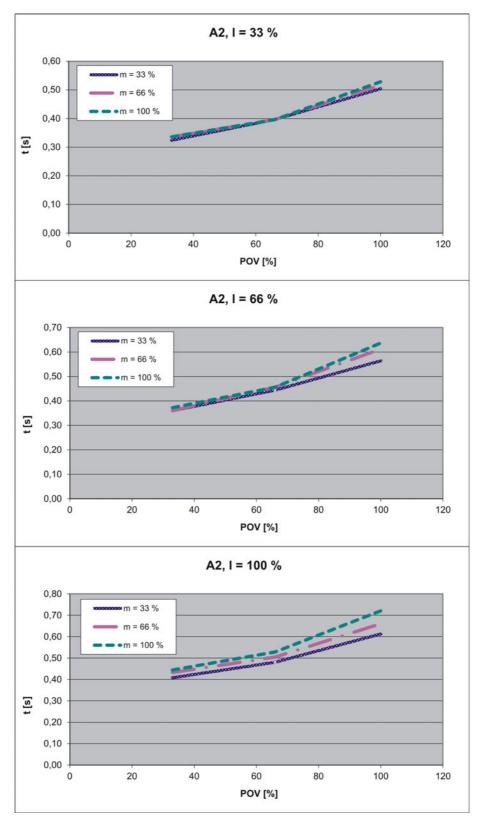
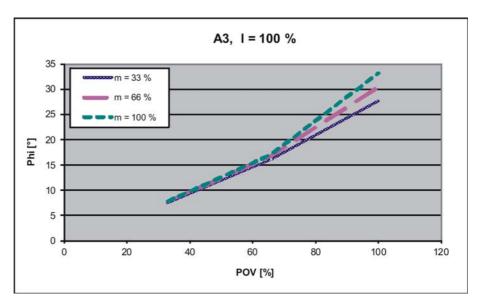



Fig. 4-220: Stopping times for STOP 1, axis 2

4.30.9.4 Stopping distances and stopping times for STOP 1, axis 3

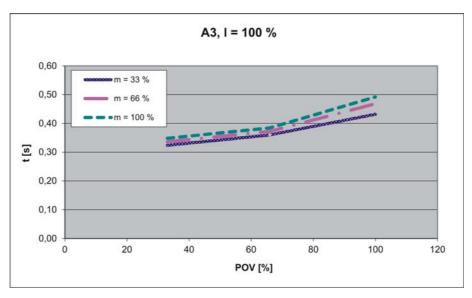
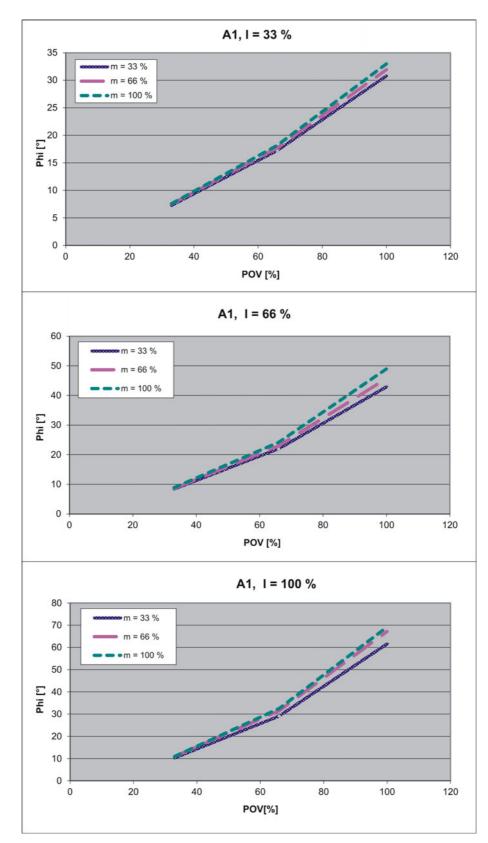


Fig. 4-222: Stopping times for STOP 1, axis 3


4.30.10 Stopping distances and times, KR 90 R3100 extra

4.30.10.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

	Stopping distance (°)	Stopping time (s)
Axis 1	47.1	0.88
Axis 2	21.6	0.43
Axis 3	20.4	0.31

Κυκα

4.30.10.2 Stopping distances and stopping times for STOP 1, axis 1

Fig. 4-223: Stopping distances for STOP 1, axis 1

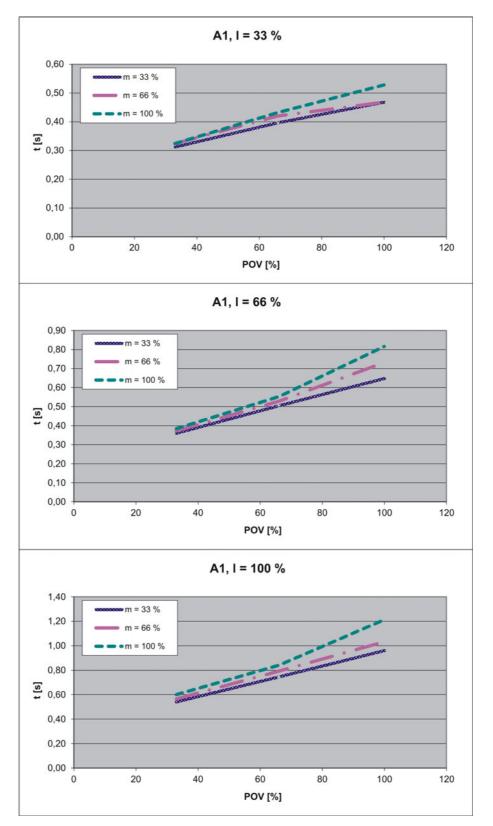


Fig. 4-224: Stopping times for STOP 1, axis 1

4.30.10.3 Stopping distances and stopping times for STOP 1, axis 2

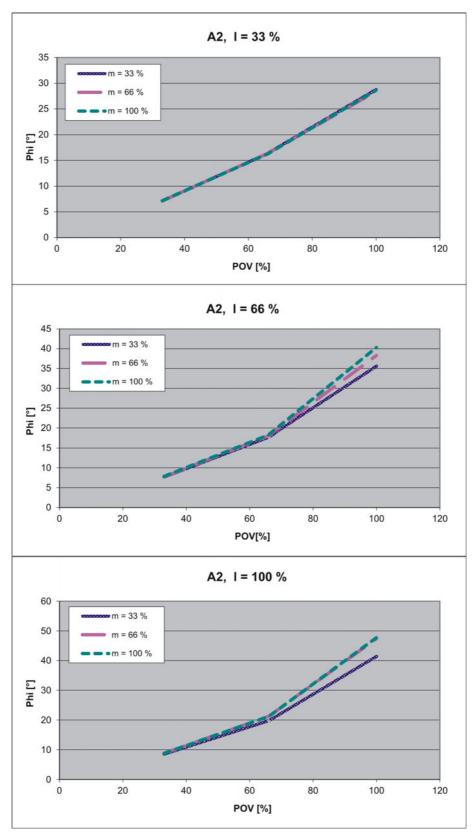


Fig. 4-225: Stopping distances for STOP 1, axis 2

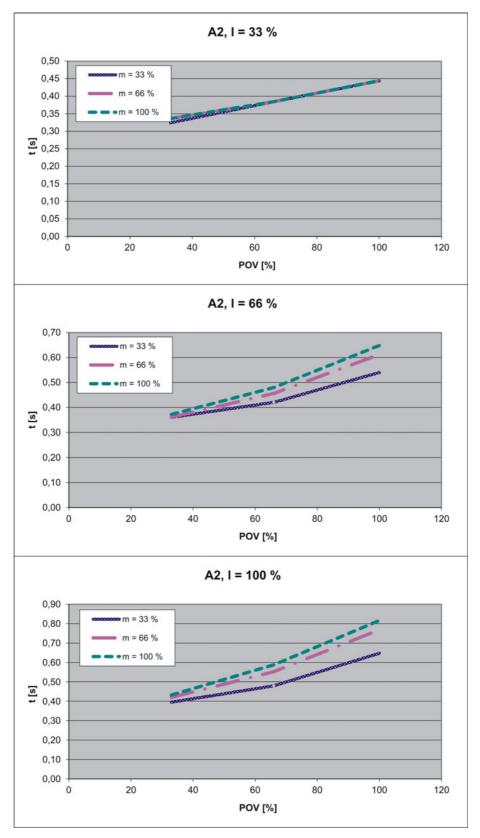


Fig. 4-226: Stopping times for STOP 1, axis 2

Κυκα

4.30.10.4 Stopping distances and stopping times for STOP 1, axis 3

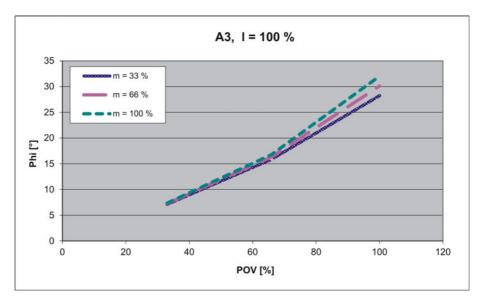


Fig. 4-227: Stopping distances for STOP 1, axis 3

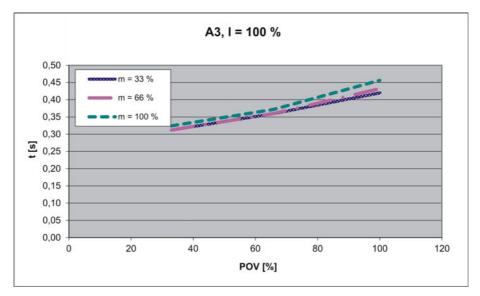


Fig. 4-228: Stopping times for STOP 1, axis 3

4.30.11 Stopping distances and times, KR 90 R3100 extra C

4.30.11.1 Stopping distances and stopping times for STOP 0, axis 1 to axis 3

- Extension I = 100%
- Program override POV = 100%
- Mass m = maximum load (rated load + supplementary load on arm)

	Stopping distance (°)	Stopping time (s)
Axis 1	47.1	0.88
Axis 2	21.6	0.43
Axis 3	20.4	0.31

4.30.11.2 Stopping distances and stopping times for STOP 1, axis 1

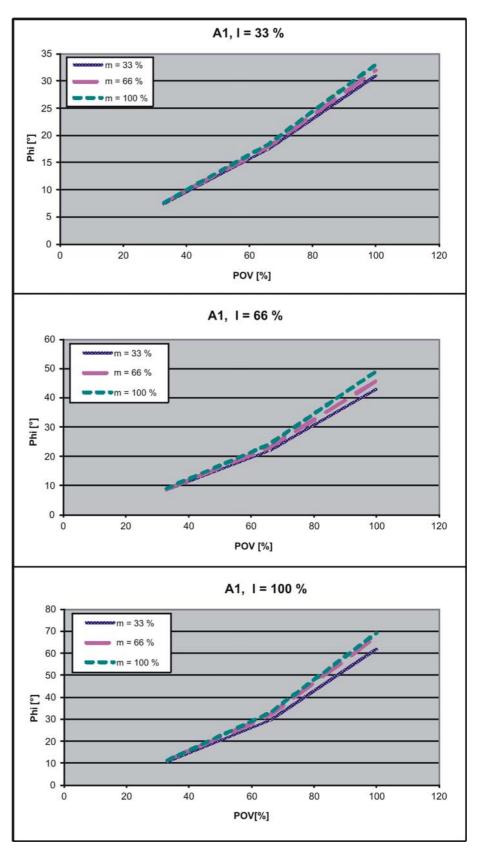


Fig. 4-229: Stopping distances for STOP 1, axis 1

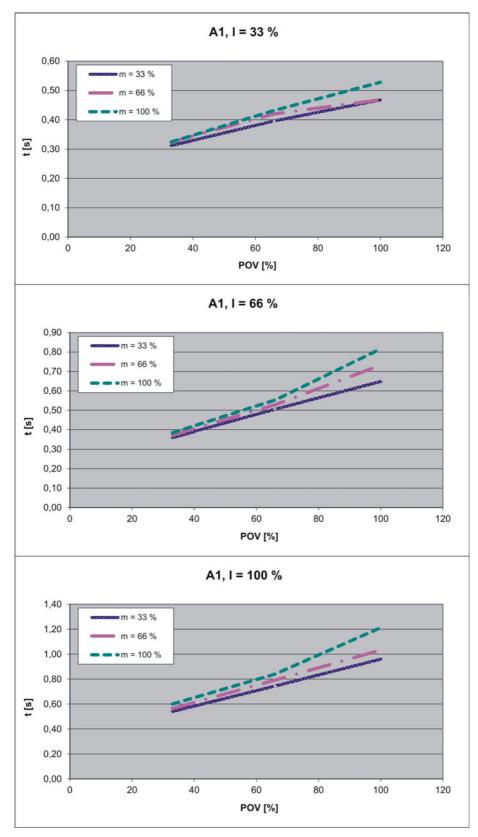


Fig. 4-230: Stopping times for STOP 1, axis 1

4.30.11.3 Stopping distances and stopping times for STOP 1, axis 2

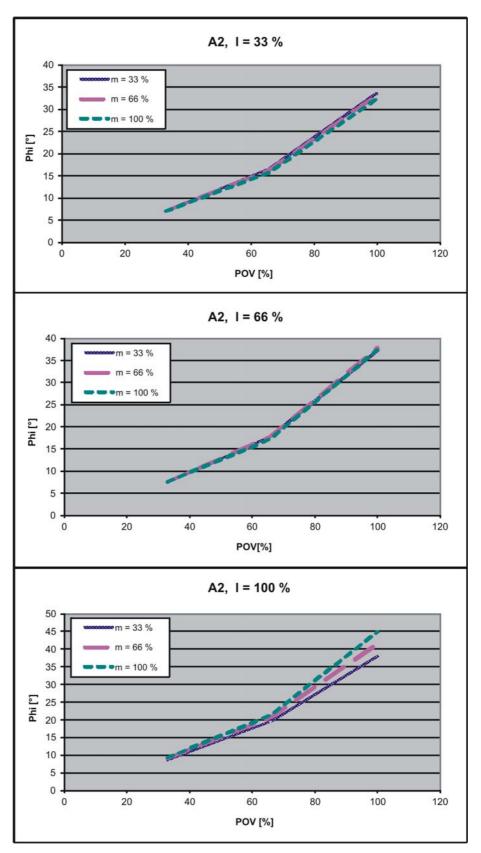


Fig. 4-231: Stopping distances for STOP 1, axis 2

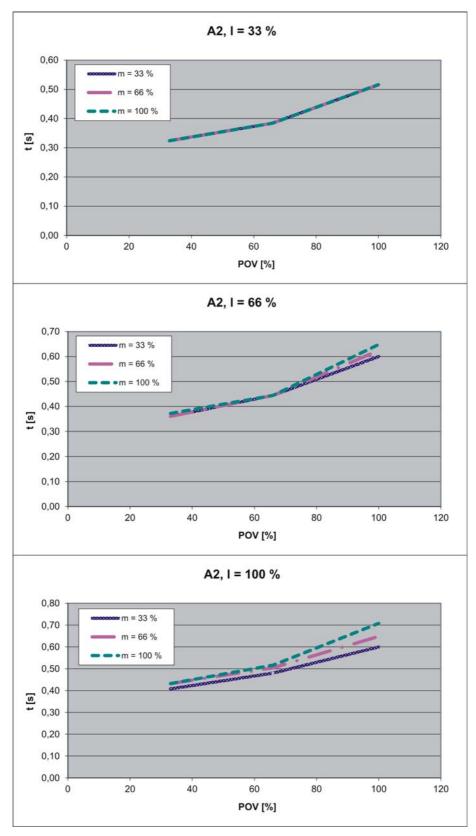
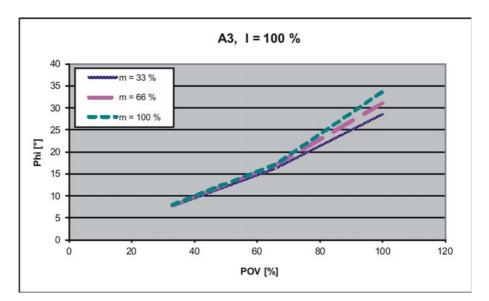



Fig. 4-232: Stopping times for STOP 1, axis 2

4.30.11.4 Stopping distances and stopping times for STOP 1, axis 3

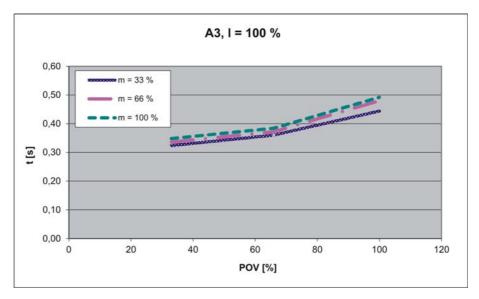


Fig. 4-234: Stopping times for STOP 1, axis 3

5 Safety

5.1 General

This "Safety" chapter refers to a mechanical component of an industrial robot. If the mechanical component is used together with a KUKA robot

controller, the "Safety" chapter of the operating instructions or assembly instructions of the robot controller must be used!

This contains all the information provided in this "Safety" chapter. It also contains additional safety information relating to the robot controller which must be observed.

Where this "Safety" chapter uses the term "industrial robot", this also refers to the individual mechanical component if applicable.

5.1.1 Liability

The device described in this document is either an industrial robot or a component thereof.

Components of the industrial robot:

- Manipulator
- Robot controller
- Teach pendant
- Connecting cables
- External axes (optional)

e.g. linear unit, turn-tilt table, positioner

- Software
- Options, accessories

The industrial robot is built using state-of-the-art technology and in accordance with the recognized safety rules. Nevertheless, misuse of the industrial robot may constitute a risk to life and limb or cause damage to the industrial robot and to other material property.

The industrial robot may only be used in perfect technical condition in accordance with its designated use and only by safety-conscious persons who are fully aware of the risks involved in its operation. Use of the industrial robot is subject to compliance with this document and with the declaration of incorporation supplied together with the industrial robot. Any functional disorders affecting safety must be rectified immediately.

Safety infor-Safety information cannot be held against KUKA Roboter GmbH. Even if all safety instructions are followed, this is not a guarantee that the industrial robot mation will not cause personal injuries or material damage.

> No modifications may be carried out to the industrial robot without the authorization of KUKA Roboter GmbH. Additional components (tools, software, etc.), not supplied by KUKA Roboter GmbH, may be integrated into the industrial robot. The user is liable for any damage these components may cause to the industrial robot or to other material property.

> In addition to the Safety chapter, this document contains further safety instructions. These must also be observed.

5.1.2 Intended use of the industrial robot

The industrial robot is intended exclusively for the use designated in the "Purpose" chapter of the operating instructions or assembly instructions.

Any use or application deviating from the intended use is deemed to be misuse and is not allowed. The manufacturer is not liable for any damage resulting from such misuse. The risk lies entirely with the user.

Operation of the industrial robot in accordance with its intended use also requires compliance with the operating and assembly instructions for the individual components, with particular reference to the maintenance specifications.

Misuse Any use or application deviating from the intended use is deemed to be misuse and is not allowed. This includes e.g.:

- Transportation of persons and animals
- Use as a climbing aid
- Operation outside the specified operating parameters
- Use in potentially explosive environments
- Operation without additional safeguards
- Outdoor operation
- Underground operation

5.1.3 EC declaration of conformity and declaration of incorporation

The industrial robot constitutes partly completed machinery as defined by the EC Machinery Directive. The industrial robot may only be put into operation if the following preconditions are met:

The industrial robot is integrated into a complete system.

or: The industrial robot, together with other machinery, constitutes a complete system.

or: All safety functions and safeguards required for operation in the complete machine as defined by the EC Machinery Directive have been added to the industrial robot.

The complete system complies with the EC Machinery Directive. This has been confirmed by means of a conformity assessment procedure.

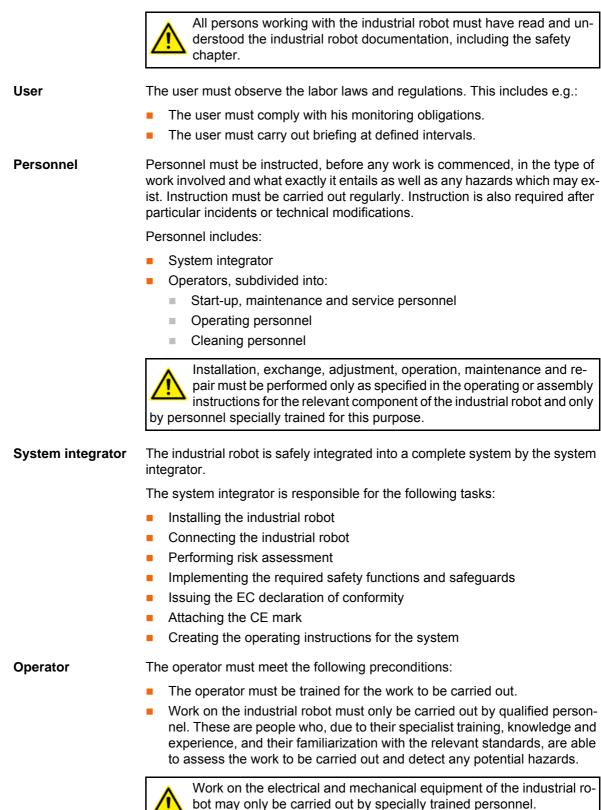
EC declaration of conformity The system integrator must issue an EC declaration of conformity for the complete system in accordance with the Machinery Directive. The EC declaration of conformity forms the basis for the CE mark for the system. The industrial robot must always be operated in accordance with the applicable national laws, regulations and standards.

The robot controller has a CE mark in accordance with the EMC Directive and the Low Voltage Directive.

Declaration of incorporation in accordance with Annex II B of the EC Machinery Directive 2006/42/EC. The assembly instructions and a list of essential requirements complied with in accordance with Annex I are integral parts of this declaration of incorporation.

> The declaration of incorporation declares that the start-up of the partly completed machinery is not allowed until the partly completed machinery has been incorporated into machinery, or has been assembled with other parts to form machinery, and this machinery complies with the terms of the EC Machinery Directive, and the EC declaration of conformity is present in accordance with Annex II A.

5.1.4 Terms used


Term	Description			
Axis range	Range of each axis, in degrees or millimeters, within which it may move. The axis range must be defined for each axis.			
Stopping distance	Stopping distance = reaction distance + braking distance			
	The stopping distance is part of the danger zone.			
Workspace	The manipulator is allowed to move within its workspace. The work- space is derived from the individual axis ranges.			
Operator (User)	The user of the industrial robot can be the management, employer or delegated person responsible for use of the industrial robot.			
Danger zone	The danger zone consists of the workspace and the stopping distances.			
Service life	The service life of a safety-relevant component begins at the time of delivery of the component to the customer.			
	The service life is not affected by whether the component is used in a robot controller or elsewhere or not, as safety-relevant components are also subject to aging during storage.			
KCP	KUKA Control Panel			
	Teach pendant for the KR C2/KR C2 edition2005			
	The KCP has all the operator control and display functions required for operating and programming the industrial robot.			
KUKA smartPAD	see "smartPAD"			
Manipulator	The robot arm and the associated electrical installations			
Safety zone	The safety zone is situated outside the danger zone.			
smartPAD	Teach pendant for the KR C4			
	The smartPAD has all the operator control and display functions required for operating and programming the industrial robot.			
Stop category 0	The drives are deactivated immediately and the brakes are applied. The manipulator and any external axes (optional) perform path-oriented braking.			
	Note: This stop category is called STOP 0 in this document.			
Stop category 1	The manipulator and any external axes (optional) perform path-main- taining braking. The drives are deactivated after 1 s and the brakes are applied.			
	Note: This stop category is called STOP 1 in this document.			
Stop category 2	The drives are not deactivated and the brakes are not applied. The manipulator and any external axes (optional) are braked with a normal braking ramp.			
	Note: This stop category is called STOP 2 in this document.			
System integrator (plant integrator)	System integrators are people who safely integrate the industrial robot into a complete system and commission it.			
T1	Test mode, Manual Reduced Velocity (<= 250 mm/s)			
T2	Test mode, Manual High Velocity (> 250 mm/s permissible)			
External axis	Motion axis which is not part of the manipulator but which is controlled using the robot controller, e.g. KUKA linear unit, turn-tilt table, Posiflex.			

5.2 Personnel

The following persons or groups of persons are defined for the industrial robot:

User

Personnel

5.3 Workspace, safety zone and danger zone

Workspaces are to be restricted to the necessary minimum size. A workspace must be safeguarded using appropriate safeguards.

5 Safety

The safeguards (e.g. safety gate) must be situated inside the safety zone. In the case of a stop, the manipulator and external axes (optional) are braked and come to a stop within the danger zone.

The danger zone consists of the workspace and the stopping distances of the manipulator and external axes (optional). It must be safeguarded by means of physical safeguards to prevent danger to persons or the risk of material damage.

5.4 Overview of protective equipment

The protective equipment of the mechanical component may include:

- Mechanical end stops
- Mechanical axis range limitation (optional)
- Axis range monitoring (optional)
- Release device (optional)
- Labeling of danger areas

Not all equipment is relevant for every mechanical component.

5.4.1 Mechanical end stops

Depending on the robot variant, the axis ranges of the main and wrist axes of the manipulator are partially limited by mechanical end stops.

Additional mechanical end stops can be installed on the external axes.

WARNING If the manipulator or an external axis hits an obstruction or a mechanical end stop or axis range limitation, the manipulator can no longer be operated safely. The manipulator must be taken out of operation and KUKA Roboter GmbH must be consulted before it is put back into operation.

5.4.2 Mechanical axis range limitation (optional)

Some manipulators can be fitted with mechanical axis range limitation in axes A1 to A3. The adjustable axis range limitation systems restrict the working range to the required minimum. This increases personal safety and protection of the system.

In the case of manipulators that are not designed to be fitted with mechanical axis range limitation, the workspace must be laid out in such a way that there is no danger to persons or material property, even in the absence of mechanical axis range limitation.

If this is not possible, the workspace must be limited by means of photoelectric barriers, photoelectric curtains or obstacles on the system side. There must be no shearing or crushing hazards at the loading and transfer areas.

This option is not available for all robot models. Information on specific robot models can be obtained from KUKA Roboter GmbH.

5.4.3 Axis range monitoring (optional)

Some manipulators can be fitted with dual-channel axis range monitoring systems in main axes A1 to A3. The positioner axes may be fitted with additional axis range monitoring systems. The safety zone for an axis can be adjusted

and monitored using an axis range monitoring system. This increases personal safety and protection of the system.

This option is not available for the KR C4. This option is not available for all robot models. Information on specific robot models can be obtained from KUKA Roboter GmbH.

5.4.4 Options for moving the manipulator without drive energy

The system user is responsible for ensuring that the training of personnel with regard to the response to emergencies or exceptional situations also includes how the manipulator can be moved without drive energy.

Description The following options are available for moving the manipulator without drive energy after an accident or malfunction:

Release device (optional)

The release device can be used for the main axis drive motors and, depending on the robot variant, also for the wrist axis drive motors.

Brake release device (option)

The brake release device is designed for robot variants whose motors are not freely accessible.

Moving the wrist axes directly by hand

There is no release device available for the wrist axes of variants in the low payload category. This is not necessary because the wrist axes can be moved directly by hand.

Information about the options available for the various robot models and about how to use them can be found in the assembly and operating instructions for the robot or requested from KUKA Roboter

NOTICE Moving the manipulator without drive energy can damage the motor brakes of the axes concerned. The motor must be replaced if the brake has been damaged. The manipulator may therefore be moved without drive energy only in emergencies, e.g. for rescuing persons.

5.4.5 Labeling on the industrial robot

All plates, labels, symbols and marks constitute safety-relevant parts of the industrial robot. They must not be modified or removed.

Labeling on the industrial robot consists of:

- Identification plates
- Warning signs
- Safety symbols
- Designation labels
- Cable markings
- Rating plates

Further information is contained in the technical data of the operating instructions or assembly instructions of the components of the industrial robot.

5.5 Safety measures

5.5.1 General safety measures

The industrial robot may only be used in perfect technical condition in accordance with its intended use and only by safety-conscious persons. Operator errors can result in personal injury and damage to property.

It is important to be prepared for possible movements of the industrial robot even after the robot controller has been switched off and locked out. Incorrect installation (e.g. overload) or mechanical defects (e.g. brake defect) can cause the manipulator or external axes to sag. If work is to be carried out on a switched-off industrial robot, the manipulator and external axes must first be moved into a position in which they are unable to move on their own, whether the payload is mounted or not. If this is not possible, the manipulator and external axes must be secured by appropriate means.

A DANGER In the absence of operational safety functions and safeguards, the industrial robot can cause personal injury or material damage. If safety functions or safeguards are dismantled or deactivated, the industrial robot may not be operated.

A DANGER Standing underneath the robot arm can cause death or injuries. For this reason, standing underneath the robot arm is prohibited!

CAUTION The motors reach temperatures during operation which can cause burns to the skin. Contact must be avoided. Appropriate safety precautions must be taken, e.g. protective gloves must be worn.

KCP/smartPAD The user must ensure that the industrial robot is only operated with the KCP/smartPAD by authorized persons.

If more than one KCP/smartPAD is used in the overall system, it must be ensured that each device is unambiguously assigned to the corresponding industrial robot. They must not be interchanged.

WARNING The operator must ensure that decoupled KCPs/smart-PADs are immediately removed from the system and stored out of sight and reach of personnel working on the industrial robot. This serves to prevent operational and non-operational EMERGENCY STOP devices from becoming interchanged.

Failure to observe this precaution may result in death, severe injuries or considerable damage to property.

External keyboard, external mouse An external keyboard and/or external mouse may only be used if the following conditions are met:

- Start-up or maintenance work is being carried out.
- The drives are switched off.
- There are no persons in the danger zone.

The KCP/smartPAD must not be used as long as an external keyboard and/or external mouse are connected to the control cabinet.

The external keyboard and/or external mouse must be removed from the control cabinet as soon as the start-up or maintenance work is completed or the KCP/smartPAD is connected.

Modifications	After modifications to the industrial robot, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.
	New or modified programs must always be tested first in Manual Reduced Ve- locity mode (T1).
	After modifications to the industrial robot, existing programs must always be tested first in Manual Reduced Velocity mode (T1). This applies to all components of the industrial robot and includes modifications to the software and configuration settings.
Faults	The following tasks must be carried out in the case of faults in the industrial robot:
	 Switch off the robot controller and secure it (e.g. with a padlock) to prevent unauthorized persons from switching it on again.
	 Indicate the fault by means of a label with a corresponding warning (tag- out).
	 Keep a record of the faults.
	 Eliminate the fault and carry out a function test.
5.5.2 Transporta	ation
Manipulator	The prescribed transport position of the manipulator must be observed. Trans- portation must be carried out in accordance with the operating instructions or assembly instructions of the robot.
	Avoid vibrations and impacts during transportation in order to prevent damage to the manipulator.
Robot controller	The prescribed transport position of the robot controller must be observed. Transportation must be carried out in accordance with the operating instruc- tions or assembly instructions of the robot controller.
	Avoid vibrations and impacts during transportation in order to prevent damage to the robot controller.
External axis (optional)	The prescribed transport position of the external axis (e.g. KUKA linear unit, turn-tilt table, positioner) must be observed. Transportation must be carried out in accordance with the operating instructions or assembly instructions of the external axis.

5.5.3 Start-up and recommissioning

Before starting up systems and devices for the first time, a check must be carried out to ensure that the systems and devices are complete and operational, that they can be operated safely and that any damage is detected.

The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety circuits must also be tested.

The passwords for logging onto the KUKA System Software as "Expert" and "Administrator" must be changed before start-up and must only be communicated to authorized personnel.

WARNING The robot controller is preconfigured for the specific industrial robot. If cables are interchanged, the manipulator and the external axes (optional) may receive incorrect data and can thus cause personal injury or material damage. If a system consists of more than one manipulator, always connect the connecting cables to the manipulators and their corresponding robot controllers.

If additional components (e.g. cables), which are not part of the scope of supply of KUKA Roboter GmbH, are integrated into the industrial robot, the user is responsible for ensuring that these components do not adversely affect or disable safety functions.

NOTICE If the internal cabinet temperature of the robot controller differs greatly from the ambient temperature, condensation can form, which may cause damage to the electrical components. Do not put the robot controller into operation until the internal temperature of the cabinet has adjusted to the ambient temperature.

Function test

The following tests must be carried out before start-up and recommissioning: It must be ensured that:

- The industrial robot is correctly installed and fastened in accordance with the specifications in the documentation.
- There is no damage to the robot that could be attributed to external forces. Example: Dents or abrasion that could be caused by an impact or collision.

WARNING In the case of such damage, the affected components must be exchanged. In particular, the motor and counter-balancing system must be checked carefully.

External forces can cause non-visible damage. For example, it can lead to a gradual loss of drive power from the motor, resulting in unintended movements of the manipulator. Death, injuries or considerable damage to property may otherwise result.

- There are no foreign bodies or loose parts on the industrial robot.
- All required safety equipment is correctly installed and operational.
- The power supply ratings of the industrial robot correspond to the local supply voltage and mains type.
- The ground conductor and the equipotential bonding cable are sufficiently rated and correctly connected.
- The connecting cables are correctly connected and the connectors are locked.

5.5.4 Manual mode

Manual mode is the mode for setup work. Setup work is all the tasks that have to be carried out on the industrial robot to enable automatic operation. Setup work includes:

- Jog mode
- Teaching
- Programming
- Program verification

The following must be taken into consideration in manual mode:

If the drives are not required, they must be switched off to prevent the manipulator or the external axes (optional) from being moved unintentionally. Κυκα

KR QUANTEC extra

- New or modified programs must always be tested first in Manual Reduced Velocity mode (T1).
- The manipulator, tooling or external axes (optional) must never touch or project beyond the safety fence.
- Workpieces, tooling and other objects must not become jammed as a result of the industrial robot motion, nor must they lead to short-circuits or be liable to fall off.
- All setup work must be carried out, where possible, from outside the safeguarded area.

If the setup work has to be carried out inside the safeguarded area, the following must be taken into consideration:

In Manual Reduced Velocity mode (T1):

 If it can be avoided, there must be no other persons inside the safeguarded area.

If it is necessary for there to be several persons inside the safeguarded area, the following must be observed:

- Each person must have an enabling device.
- All persons must have an unimpeded view of the industrial robot.
- Eye-contact between all persons must be possible at all times.
- The operator must be so positioned that he can see into the danger area and get out of harm's way.

In Manual High Velocity mode (T2):

- This mode may only be used if the application requires a test at a velocity higher than possible in T1 mode.
- Teaching and programming are not permissible in this operating mode.
- Before commencing the test, the operator must ensure that the enabling devices are operational.
- The operator must be positioned outside the danger zone.
- There must be no other persons inside the safeguarded area. It is the responsibility of the operator to ensure this.

5.5.5 Automatic mode

Automatic mode is only permissible in compliance with the following safety measures:

- All safety equipment and safeguards are present and operational.
- There are no persons in the system.
- The defined working procedures are adhered to.

If the manipulator or an external axis (optional) comes to a standstill for no apparent reason, the danger zone must not be entered until an EMERGENCY STOP has been triggered.

5.5.6 Maintenance and repair

After maintenance and repair work, checks must be carried out to ensure the required safety level. The valid national or regional work safety regulations must be observed for this check. The correct functioning of all safety functions must also be tested.

The purpose of maintenance and repair work is to ensure that the system is kept operational or, in the event of a fault, to return the system to an operational state. Repair work includes troubleshooting in addition to the actual repair itself.

The following safety measures must be carried out when working on the indus-
trial robot:

- Carry out work outside the danger zone. If work inside the danger zone is necessary, the user must define additional safety measures to ensure the safe protection of personnel.
- Switch off the industrial robot and secure it (e.g. with a padlock) to prevent it from being switched on again. If it is necessary to carry out work with the robot controller switched on, the user must define additional safety measures to ensure the safe protection of personnel.
- If it is necessary to carry out work with the robot controller switched on, this may only be done in operating mode T1.
- Label the system with a sign indicating that work is in progress. This sign must remain in place, even during temporary interruptions to the work.
- The EMERGENCY STOP devices must remain active. If safety functions or safeguards are deactivated during maintenance or repair work, they must be reactivated immediately after the work is completed.

A DANGER Before work is commenced on live parts of the robot system, the main switch must be turned off and secured against being switched on again. The system must then be checked to ensure that it is deenergized. It is not sufficient, before commencing work on live parts, to execute an EMERGENCY STOP or a safety stop, or to switch off the drives, as this does not disconnect the robot system from the mains power supply. Parts remain energized. Death or severe injuries may result.

Faulty components must be replaced using new components with the same article numbers or equivalent components approved by KUKA Roboter GmbH for this purpose.

Cleaning and preventive maintenance work is to be carried out in accordance with the operating instructions.

Robot controller Even when the robot controller is switched off, parts connected to peripheral devices may still carry voltage. The external power sources must therefore be switched off if work is to be carried out on the robot controller.

The ESD regulations must be adhered to when working on components in the robot controller.

Voltages in excess of 50 V (up to 600 V) can be present in various components for several minutes after the robot controller has been switched off! To prevent life-threatening injuries, no work may be carried out on the industrial robot in this time.

Water and dust must be prevented from entering the robot controller.

Counterbal-
ancing systemSome robot variants are equipped with a hydropneumatic, spring or gas cylin-
der counterbalancing system.

The hydropneumatic and gas cylinder counterbalancing systems are pressure equipment and, as such, are subject to obligatory equipment monitoring and the provisions of the Pressure Equipment Directive.

The user must comply with the applicable national laws, regulations and standards pertaining to pressure equipment.

Inspection intervals in Germany in accordance with Industrial Safety Order, Sections 14 and 15. Inspection by the user before commissioning at the installation site.

The following safety measures must be carried out when working on the counterbalancing system:

- The manipulator assemblies supported by the counterbalancing systems must be secured.
- Work on the counterbalancing systems must only be carried out by qualified personnel.

Hazardous substances

The following safety measures must be carried out when handling hazardous substances:

- Avoid prolonged and repeated intensive contact with the skin.
- Avoid breathing in oil spray or vapors.
- Clean skin and apply skin cream.

To ensure safe use of our products, we recommend regularly requesting up-to-date safety data sheets for hazardous substances.

5.5.7 Decommissioning, storage and disposal

The industrial robot must be decommissioned, stored and disposed of in accordance with the applicable national laws, regulations and standards.

5.6 Applied norms and regulations

Name	Definition	Edition
2006/42/EC	Machinery Directive:	2006
	Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast)	
2014/30/EU	EMC Directive:	2014
	Directive 2014/30/EC of the European Parliament and of the Council of 26 February 2014 on the approximation of the laws of the Member States concerning electromagnetic compatibility	
2014/68/EU	Pressure Equipment Directive:	2014
	Directive 2014/68/EU of the European Parliament and of the Council of 15 May 2014 on the approximation of the laws of the Member States concerning pressure equipment	
	(Only applicable for robots with hydropneumatic counterbal- ancing system.)	
EN ISO 13850	Safety of machinery:	2015
	Emergency stop - Principles for design	
EN ISO 13849-1	Safety of machinery:	2015
	Safety-related parts of control systems - Part 1: General prin- ciples of design	
EN ISO 13849-2	Safety of machinery:	2012
	Safety-related parts of control systems - Part 2: Validation	

EN ISO 12100	Safety of machinery:	2010
	General principles of design, risk assessment and risk reduc- tion	
EN ISO 10218-1	Industrial robots – Safety requirements	2011
	Part 1: Robots	
	Note: Content equivalent to ANSI/RIA R.15.06-2012, Part 1	
EN 614-1 + A1	Safety of machinery:	2009
	Ergonomic design principles - Part 1: Terms and general prin- ciples	
EN 61000-6-2	Electromagnetic compatibility (EMC):	2005
	Part 6-2: Generic standards; Immunity for industrial environ- ments	
EN 61000-6-4 + A1	Electromagnetic compatibility (EMC):	2011
	Part 6-4: Generic standards; Emission standard for industrial environments	
EN 60204-1 + A1	Safety of machinery:	2009
	Electrical equipment of machines - Part 1: General require- ments	

5 Safety KUKA

κιικα

6 Planning

6.1 Information for planning

In the planning and design phase, care must be taken regarding the functions or applications to be executed by the kinematic system. The following conditions can lead to premature wear. They necessitate shorter maintenance intervals and/or earlier exchange of components. In addition, the permissible operating parameters specified in the technical data must be taken into account and observed during planning.

- Continuous operation near temperature limits or in abrasive environments
- Continuous operation close to the performance limits, e.g. high rpm of an axis
- High duty cycle of individual axes
- Monotonous motion profiles, e.g. short, frequently recurring axis motions
- Static axis positions, e.g. continuous vertical position of a wrist axis
- External forces (process forces) acting on the robot

If one or more of these conditions are to apply during operation of the kinematic system, KUKA Roboter GmbH must be consulted.

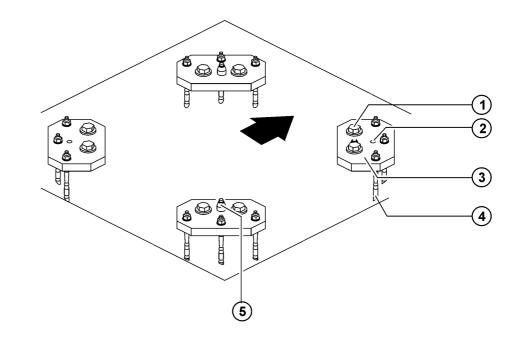
If the robot reaches its corresponding operation limit or if it is operated near the limit for a period of time, the built-in monitoring functions come into effect and the robot is automatically switched off.

This protective function can limit the availability of the robot system.

In the case of high thermal, chemical and mechanical loads and to support maintenance work, the supplied pressure reducer and the associated manometer are to be installed away from the robot in a protected area, e.g. on the safety fence, system controller or control cabinet (max. distance 10 m from robot base; the greater the distance, the longer it takes before the overpressure in the robot has dissipated completely). Alternatively, or additionally, the pressure reducer and manometer can be protected by means of an enclosure.

6.2 Mounting base with centering

Description The mounting base with centering is used when the robot is fastened to the floor, i.e. directly on a concrete foundation.


The mounting base with centering consists of:

- Bedplates
- Resin-bonded anchors (chemical anchors)
- Fastening elements

This mounting variant requires a level and smooth surface on a concrete foundation with adequate load bearing capacity. The concrete foundation must be able to accommodate the forces occurring during operation. There must be no layers of insulation or screed between the bedplates and the concrete foundation.

The minimum dimensions must be observed.

KUKA KR QUANTEC extra

Fig. 6-1: Mounting base

- 1 Hexagon bolt
- 4 Resin-bonded anchors with Dynamic Set5 Pin with Allen screw
- 2 M20 thread for mastering screw
- 3 Bedplate

Grade of concrete for foundations When producing foundations from concrete, observe the load-bearing capacity of the ground and the country-specific construction regulations. There must be no layers of insulation or screed between the bedplates and the concrete foundation. The quality of the concrete must meet the requirements of the following standard:

C20/25 according to DIN EN 206-1:2001/DIN 1045-2:2008

Dimensioned
drawingThe following illustrations provide all the necessary information on the mount-
ing base, together with the required foundation data.

6 Planning

KUKA

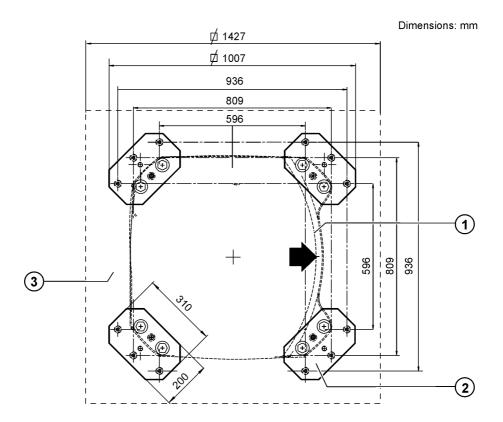
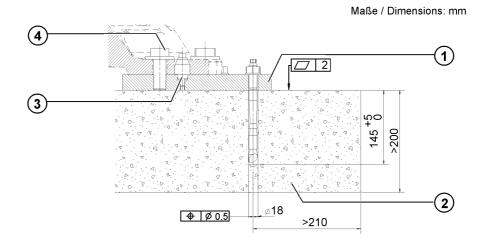



Fig. 6-2: Mounting base, dimensioned drawing

- 1 Robot
- 2 Bedplate
- 3 Concrete foundation

To ensure that the anchor forces are safely transmitted to the foundation, observe the dimensions for concrete foundations specified in the following illustration.

Fig. 6-3: Cross-section of foundations

1	Bedplate	3	Pin	

2 Concrete foundation 4 Hexagon bolt

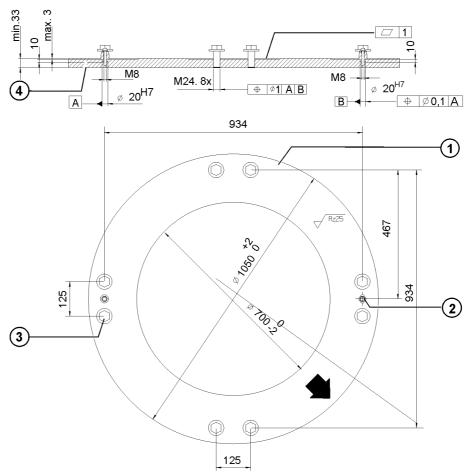
6.3 Machine frame mounting

Description The "machine frame mounting" assembly with centering is used when the robot is fastened on a steel structure, a booster frame (pedestal) or a KUKA linear unit. This assembly is also used if the manipulator is installed in an inverted position, i.e. on the ceiling. It must be ensured that the substructure is able to withstand safely the forces occurring during operation (foundation loads). The following diagram contains all the necessary information that must be observed when preparing the mounting surface (>>> Fig. 6-4).

The machine frame mounting assembly consists of:

- Pins with fasteners
- Hexagon bolts with conical spring washers

Fig. 6-4: Machine frame mounting


- 1 Pin
- 2 Hexagon bolt

Dimensioned drawing

The following illustration provides all the necessary information on machine frame mounting, together with the required foundation data.

6 Planning KUKA

Maße / Dimensions: mm

Fig. 6-5: Machine frame mounting, dimensioned drawing

- 1 Mounting surface
- 3 Hexagon bolt (8x)

2 Pin

4 Steel structure

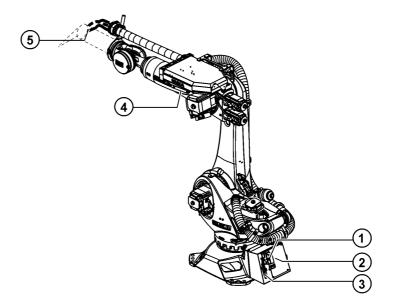
6.4 Connecting cables and interfaces

Connecting

cables

The connecting cables comprise all the cables for transferring energy and signals between the robot and the robot controller. They are connected to the robot junction boxes with connectors. The set of connecting cables comprises:

- Motor cable, X20 X30
- Data cable X21 X31
- Ground conductor (optional)


Depending on the specification of the robot, various connecting cables are used. Cable lengths of 7 m, 15 m, 25 m, 35 m and 50 m are available. The maximum length of the connecting cables must not exceed 50 m. Thus if the robot is operated on a linear unit which has its own energy supply chain these cables must also be taken into account.

For the connecting cables, an additional ground conductor is always required to provide a low-resistance connection between the robot and the control cabinet in accordance with DIN EN 60204. The ground conductors are connected via ring cable lugs. The threaded bolt for connecting the ground conductor is located on the base frame of the robot.

The following points must be observed when planning and routing the connecting cables:

- The bending radius for fixed routing must not be less than 150 mm for motor cables and 60 mm for control cables.
- Protect cables against exposure to mechanical stress.
- Route the cables without mechanical stress no tensile forces on the connectors
- Cables are only to be installed indoors.
- Observe the permissible temperature range (fixed installation) of 263 K (-10 °C) to 343 K (+70 °C).
- Route the motor cables and the data cables separately in metal ducts; if necessary, additional measures must be taken to ensure electromagnetic compatibility (EMC).

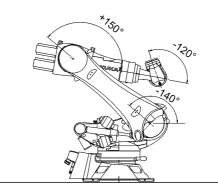
Interface for energy supply systems The robot can be equipped with an energy supply system between axis 1 and axis 3 and a second energy supply system between axis 3 and axis 6. The A1 interface required for this is located on the rear of the base frame, the A3 interface is located on the side of the arm and the interface for axis 6 is located on the robot tool. Depending on the application, the interfaces differ in design and scope. They can be equipped e.g. with connections for cables and hoses. Detailed information on the connector pin allocation, threaded unions, etc. is given in separate documentation.

Fig. 6-6: Interfaces on the robot

- Connection, motor cable X30
 Interface, axis 1, base frame
- 4 Interface, axis 3, arm
- 5 Interface, axis 6, tool
- 3 Connection, data cable, X31

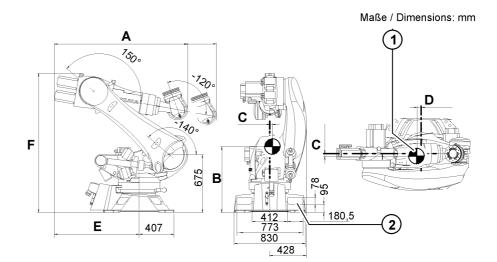
Κυκα

7 Transportation


7.1 Transporting the robot

Before transporting the robot, always move the robot into its transport position. It must be ensured that the robot is stable while it is being transported. The robot must remain in its transport position until it has been fastened in position. Before the robot is lifted, it must be ensured that it is free from obstructions. Remove all transport safeguards, such as nails and screws, in advance. First remove any rust or glue on contact surfaces.

Transport position


The robot must be in the transport position (>>> Fig. 7-1) before it can be transported. The robot is in the transport position when the axes are in the following positions:

Axis	A1	A2	A3	A4	A5	A6
Transport posi- tion	0°	-140°	+150°	0°	-120°	0°

Fig. 7-1: Transport position

Transport dimensions The transport dimensions (>>> Fig. 7-2) for the robot can be noted from the following diagram. The position of the center of gravity and the weight vary according to the specific configuration and the position of axes 2 and 3. The specified dimensions refer to the robot without equipment.

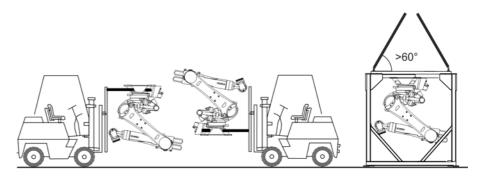
Fig. 7-2: Transport dimensions

- 1 Center of gravity
- 2 Fork slots

Transport dimensions and centers of gravity

Robot with reach	A	В	С	D	E	F
R2500	1576	759	35	58	990	1625
R2700	1740	760	35	39	990	1625
R2900	1740	803	38	87	1143	1754
R3100	1937	798	40	41	1143	1754

Transportation The robot can be transported by fork lift truck or using lifting tackle.


WARNING Use of unsuitable handling equipment may result in damage to the robot or injury to persons. Only use authorized handling equipment with a sufficient load-bearing capacity. Only transport the robot in the manner specified here.

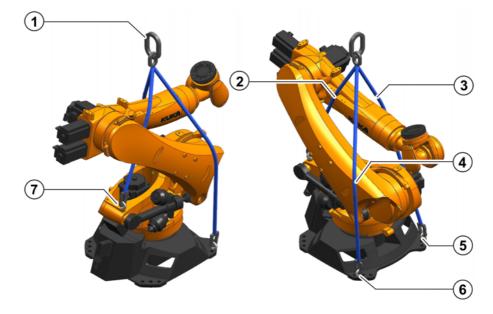
Transportation by
fork lift truckFor transport by fork lift truck (>>> Fig. 7-3), two fork slots are provided in the
base frame. The robot can be picked up by the fork lift truck from the front and
rear. The base frame must not be damaged when inserting the forks into the
fork slots. The fork lift truck must have a minimum payload capacity of 2.0 t
and an adequate fork length.

Ceiling-mounted robots can only be transported by fork lift truck.

For installation situations in which the fork slots are not accessible, the "Recovery aid" accessory is available. With this device, the robot can also be transported using the fork lift truck.

NOTICE Avoid excessive loading of the fork slots through undue inward or outward movement of hydraulically adjustable forks of the fork lift truck. Failure to do so may result in material damage.

Fig. 7-3: Transportation by fork lift truck


Transportation with lifting tackle

The robot can also be transported using lifting tackle (>>> Fig. 7-4). The robot must be in the transport position. The lifting tackle is attached at 3 points to M16 DIN 580 eyebolts. All the legs must be routed as shown in the following illustration so that the robot is not damaged. Installed tools and items of equipment can cause undesirable shifts in the center of gravity. Items of equipment, especially energy supply systems, must be removed to the extent necessary to avoid them being damaged by the legs of the lifting tackle during transportation.

All the legs are labeled. Leg G3 is provided with an adjustable chain that must be adjusted so that the robot is suspended vertically from the crane. If necessary, the robot must be set down again and the chain readjusted.

WARNING The robot may tip during transportation. Risk of personal injury and damage to property. If the robot is being transported using lifting tackle, special care must be ex-

ercised to prevent it from tipping. Additional safeguarding measures must be taken. It is forbidden to pick up the robot in any other way using a crane!

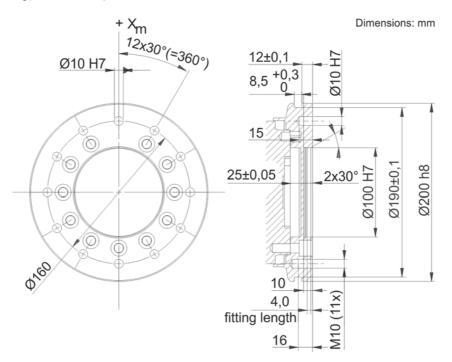
Fig. 7-4: Transportation using lifting tackle

- 1 Lifting tackle assembly
- 2 Leg G3
- 3 Leg G1
- 4 Leg G2
- 5 M16 eyebolt, base frame, front, left
- 6 M16 eyebolt, base frame, front, right
- 7 M16 eyebolt, rotating column, rear

κυκα

8 Options

8.1 Mounting flange, adapter (optional)


Description

This mounting flange (adapter) (>>> Fig. 8-1) can be fitted on the 150/180/210 kg in-line wrist to convert it to a mounting flange with D=160. This enables e.g. tools to be used which are dimensioned for the in-line wrist with the D=160 mounting flange. The design of the flange also allows mounting of the holder A6 of the energy supply systems A3-A6.

When this adapter is mounted, the distance between the intersection of A4/A5 and the face of the mounting flange is offset forward by 25 mm.

The reference point for the load center of gravity remains unchanged and thus corresponds to the values for the in-line wrist IW 150/180/210. The design of the adapter is similar to DIN/ISO 9409-1-A.

The mounting flange is depicted (>>> Fig. 8-1) with axes 4 and 6 in the zero position. The symbol X_m indicates the position of the locating element (bushing) in the zero position.

Fig. 8-1: Mounting flange, adapter

1 Fitting length

Mounting flange, adapter	IW 150/180/210 to IW 210/240
Hole circle	160 mm
Screw grade	10.9
Screw size	M10
Number of fastening threads	11
Clamping length	1.5 x nominal diameter
Depth of engagement	min. 12 mm, max. 16 mm
Locating element	10 ^{H7}

8.2 Control cable for single axis (optional)

Description The control cable for single axis is used when additional axes (e.g. KUKA linear unit or turntables) are controlled via the robot. In this case, the control cable is guided from the RDC box through the hollow shaft of axis 1 to a connector interface on the push-in module.

8.3 Release device (optional)

DescriptionThe release device can be used to move the manipulator manually after an accident or malfunction. The release device can be used for the motors of axes
1 to 5. It cannot be used for axis 6, as this motor is not accessible. It is only for
use in exceptional circumstances and emergencies (e.g. for freeing people).

The release device is mounted on the base frame of the manipulator. This assembly also includes a ratchet and a set of plates with one plate for each motor. The plate specifies the direction of rotation for the ratchet and shows the corresponding direction of motion of the manipulator.

Κυκα

9 KUKA Service

9.1 Requesting support

Introduction This documentation provides information on operation and operator control, and provides assistance with troubleshooting. For further assistance, please contact your local KUKA subsidiary.

Information

n The following information is required for processing a support request:

- Description of the problem, including information about the duration and frequency of the fault
- As comprehensive information as possible about the hardware and software components of the overall system

The following list gives an indication of the information which is relevant in many cases:

- Model and serial number of the kinematic system, e.g. the manipulator
- Model and serial number of the controller
- Model and serial number of the energy supply system
- Designation and version of the system software
- Designations and versions of other software components or modifications
- Diagnostic package KRCDiag

Additionally for KUKA Sunrise: Existing projects including applications For versions of KUKA System Software older than V8: Archive of the software (KRCDiag is not yet available here.)

- Application used
- External axes used

9.2 KUKA Customer Support

Availability KUKA Customer Support is available in many countries. Please do not hesitate to contact us if you have any questions.

Argentina	Ruben Costantini S.A. (Agency)				
	Luis Angel Huergo 13 20				
	Parque Industrial				
	2400 San Francisco (CBA)				
	Argentina				
	Tel. +54 3564 421033				
	Fax +54 3564 428877				
	ventas@costantini-sa.com				
Australia	KUKA Robotics Australia Pty Ltd				
	45 Fennell Street				
	Port Melbourne VIC 3207				
	Australia				
	Tel. +61 3 9939 9656				
	info@kuka-robotics.com.au				
	www.kuka-robotics.com.au				

Belgium	KUKA Automatisering + Robots N.V. Centrum Zuid 1031 3530 Houthalen Belgium Tel. +32 11 516160 Fax +32 11 526794 info@kuka.be www.kuka.be
Brazil	KUKA Roboter do Brasil Ltda. Travessa Claudio Armando, nº 171 Bloco 5 - Galpões 51/52 Bairro Assunção CEP 09861-7630 São Bernardo do Campo - SP Brazil Tel. +55 11 4942-8299 Fax +55 11 2201-7883 info@kuka-roboter.com.br www.kuka-roboter.com.br
Chile	Robotec S.A. (Agency) Santiago de Chile Chile Tel. +56 2 331-5951 Fax +56 2 331-5952 robotec@robotec.cl www.robotec.cl
China	KUKA Robotics China Co., Ltd. No. 889 Kungang Road Xiaokunshan Town Songjiang District 201614 Shanghai P. R. China Tel. +86 21 5707 2688 Fax +86 21 5707 2603 info@kuka-robotics.cn www.kuka-robotics.com
Germany	KUKA Roboter GmbH Zugspitzstr. 140 86165 Augsburg Germany Tel. +49 821 797-1926 Fax +49 821 797-41 1926 Hotline.robotics.de@kuka.com www.kuka-roboter.de

K	U	K	
			_

France	KUKA Automatisme + Robotique SAS Techvallée 6, Avenue du Parc 91140 Villebon S/Yvette France Tel. +33 1 6931660-0 Fax +33 1 6931660-1 commercial@kuka.fr www.kuka.fr
India	KUKA Robotics India Pvt. Ltd. Office Number-7, German Centre, Level 12, Building No 9B DLF Cyber City Phase III 122 002 Gurgaon Haryana India Tel. +91 124 4635774 Fax +91 124 4635773 info@kuka.in www.kuka.in
Italy	KUKA Roboter Italia S.p.A. Via Pavia 9/a - int.6 10098 Rivoli (TO) Italy Tel. +39 011 959-5013 Fax +39 011 959-5141 kuka@kuka.it www.kuka.it
Japan	KUKA Robotics Japan K.K. YBP Technical Center 134 Godo-cho, Hodogaya-ku Yokohama, Kanagawa 240 0005 Japan Tel. +81 45 744 7691 Fax +81 45 744 7696 info@kuka.co.jp
Canada	KUKA Robotics Canada Ltd. 6710 Maritz Drive - Unit 4 Mississauga L5W 0A1 Ontario Canada Tel. +1 905 670-8600 Fax +1 905 670-8604 info@kukarobotics.com www.kuka-robotics.com/canada

KUKA KR QUANTEC extra

Korea	KUKA Robotics Korea Co. Ltd. RIT Center 306, Gyeonggi Technopark 1271-11 Sa 3-dong, Sangnok-gu Ansan City, Gyeonggi Do 426-901 Korea Tel. +82 31 501-1451 Fax +82 31 501-1461 info@kukakorea.com
Malaysia	KUKA Robot Automation (M) Sdn Bhd South East Asia Regional Office No. 7, Jalan TPP 6/6 Taman Perindustrian Puchong 47100 Puchong Selangor Malaysia Tel. +60 (03) 8063-1792 Fax +60 (03) 8060-7386 info@kuka.com.my
Mexico	KUKA de México S. de R.L. de C.V. Progreso #8 Col. Centro Industrial Puente de Vigas Tlalnepantla de Baz 54020 Estado de México Mexico Tel. +52 55 5203-8407 Fax +52 55 5203-8148 info@kuka.com.mx www.kuka-robotics.com/mexico
Norway	KUKA Sveiseanlegg + Roboter Sentrumsvegen 5 2867 Hov Norway Tel. +47 61 18 91 30 Fax +47 61 18 62 00 info@kuka.no
Austria	KUKA Roboter CEE GmbH Gruberstraße 2-4 4020 Linz Austria Tel. +43 7 32 78 47 52 Fax +43 7 32 79 38 80 office@kuka-roboter.at www.kuka.at

KUKA

Poland	KUKA Roboter Austria GmbH Spółka z ograniczoną odpowiedzialnością Oddział w Polsce UI. Porcelanowa 10 40-246 Katowice Poland Tel. +48 327 30 32 13 or -14 Fax +48 327 30 32 26 ServicePL@kuka-roboter.de
Portugal	KUKA Robots IBÉRICA, S.A. Rua do Alto da Guerra n° 50 Armazém 04 2910 011 Setúbal Portugal Tel. +351 265 729 780 Fax +351 265 729 782 info.portugal@kukapt.com www.kuka.com
Russia	KUKA Robotics RUS Werbnaja ul. 8A 107143 Moskau Russia Tel. +7 495 781-31-20 Fax +7 495 781-31-19 info@kuka-robotics.ru www.kuka-robotics.ru
Sweden	KUKA Svetsanläggningar + Robotar AB A. Odhners gata 15 421 30 Västra Frölunda Sweden Tel. +46 31 7266-200 Fax +46 31 7266-201 info@kuka.se
Switzerland	KUKA Roboter Schweiz AG Industriestr. 9 5432 Neuenhof Switzerland Tel. +41 44 74490-90 Fax +41 44 74490-91 info@kuka-roboter.ch www.kuka-roboter.ch

Spain	KUKA Robots IBÉRICA, S.A. Pol. Industrial Torrent de la Pastera Carrer del Bages s/n 08800 Vilanova i la Geltrú (Barcelona) Spain Tel. +34 93 8142-353 Fax +34 93 8142-950 comercial@kukarob.es www.kuka.es
South Africa	Jendamark Automation LTD (Agency) 76a York Road North End 6000 Port Elizabeth South Africa Tel. +27 41 391 4700 Fax +27 41 373 3869 www.jendamark.co.za
Taiwan	KUKA Robot Automation Taiwan Co., Ltd. No. 249 Pujong Road Jungli City, Taoyuan County 320 Taiwan, R. O. C. Tel. +886 3 4331988 Fax +886 3 4331948 info@kuka.com.tw www.kuka.com.tw
Thailand	KUKA Robot Automation (M)SdnBhd Thailand Office c/o Maccall System Co. Ltd. 49/9-10 Soi Kingkaew 30 Kingkaew Road Tt. Rachatheva, A. Bangpli Samutprakarn 10540 Thailand Tel. +66 2 7502737 Fax +66 2 6612355 atika@ji-net.com www.kuka-roboter.de
Czech Republic	KUKA Roboter Austria GmbH Organisation Tschechien und Slowakei Sezemická 2757/2 193 00 Praha Horní Počernice Czech Republic Tel. +420 22 62 12 27 2 Fax +420 22 62 12 27 0 support@kuka.cz

	Л
	H

Hungary	KUKA Robotics Hungaria Kft. Fö út 140 2335 Taksony Hungary Tel. +36 24 501609 Fax +36 24 477031 info@kuka-robotics.hu
USA	KUKA Robotics Corporation 51870 Shelby Parkway Shelby Township 48315-1787 Michigan USA Tel. +1 866 873-5852 Fax +1 866 329-5852 info@kukarobotics.com www.kukarobotics.com
UK	KUKA Robotics UK Ltd Great Western Street Wednesbury West Midlands WS10 7LL UK Tel. +44 121 505 9970 Fax +44 121 505 6589 service@kuka-robotics.co.uk www.kuka-robotics.co.uk

Index

Numbers

2006/42/EC 262 2014/30/EU 262 2014/68/EU 262 95/16/EC 262

Α

Accessories 13, 251 Adapter (option) 275 Angle of rotation 204 ANSI/RIA R.15.06-2012 263 Applied norms and regulations 262 Arm 14 Automatic mode 260 Axis data, KR 120 R2900 extra 114 Axis data, KR 120 R2900 extra C 135 Axis data, KR 120 R2900 extra C-F 142 Axis data, KR 120 R2900 extra C-F-HP 149 Axis data, KR 120 R2900 extra F 121 Axis data, KR 120 R2900 extra F-HP 128 Axis data, KR 150 R2700 extra 72 Axis data, KR 150 R2700 extra C 93 Axis data, KR 150 R2700 extra C-F 100 Axis data, KR 150 R2700 extra C-F-HP 107 Axis data, KR 150 R2700 extra F 79 Axis data, KR 150 R2700 extra F-HP 86 Axis data, KR 180 R2500 extra 30 Axis data, KR 180 R2500 extra C 51 Axis data, KR 180 R2500 extra C-F 58 Axis data, KR 180 R2500 extra C-F-HP 65 Axis data, KR 180 R2500 extra F 37 Axis data, KR 180 R2500 extra F-HP 44 Axis data, KR 210 R2700 extra 23 Axis data, KR 90 R3100 extra 156 Axis data, KR 90 R3100 extra C 177 Axis data, KR 90 R3100 extra C-F 185 Axis data, KR 90 R3100 extra C-F-HP 193 Axis data, KR 90 R3100 extra F 163 Axis data, KR 90 R3100 extra F-HP 170 Axis range 253 Axis range limitation 255 Axis range monitoring 255

В

Base frame 14, 15 Basic data,KR 120 R2900 extra 113 Basic data,KR 120 R2900 extra C 134 Basic data,KR 120 R2900 extra C-F 141 Basic data,KR 120 R2900 extra C-F-HP 148 Basic data,KR 120 R2900 extra F 120 Basic data,KR 120 R2900 extra F 120 Basic data,KR 150 R2700 extra F-HP 127 Basic data,KR 150 R2700 extra C 92 Basic data,KR 150 R2700 extra C-F 99 Basic data,KR 150 R2700 extra C-F-HP 106 Basic data,KR 150 R2700 extra F 78 Basic data,KR 150 R2700 extra F 78 Basic data,KR 180 R2500 extra 29 Basic data,KR 180 R2500 extra C 50 Basic data,KR 180 R2500 extra C-F 57 Basic data,KR 180 R2500 extra C-F-HP 64 Basic data,KR 180 R2500 extra F 36 Basic data,KR 180 R2500 extra F -HP 43 Basic data,KR 210 R2700 extra 22 Basic data,KR 90 R3100 extra 155 Basic data,KR 90 R3100 extra C 176 Basic data,KR 90 R3100 extra C -F 183 Basic data,KR 90 R3100 extra C-F 183 Basic data,KR 90 R3100 extra F 162 Basic data,KR 90 R3100 extra F 162

С

CE mark 252 Center of gravity 271 Cleaning work 261 Connecting cables 13, 23, 29, 37, 44, 50, 58, 65, 71, 79, 86, 92, 100, 107, 113, 121, 128, 134, 142, 149, 155, 163, 170, 176, 184, 192, 251, 269 Connecting cables, cable lengths 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100, 107, 114, 121, 128, 135, 142, 149, 156, 163, 170, 177, 185, 193 Control cable, single axis 276 Counterbalancing system 14, 15, 261 Counterbalancing system, hydropneumatic 15

D

Danger zone 253 Declaration of conformity 252 Declaration of incorporation 251, 252 Decommissioning 262 Description of the robot system 13 Dimensions, transportation 271 DIN/ISO9409-1-A 14 Disposal 262 Documentation, industrial robot 9

Ε

EC declaration of conformity 252 Electrical installations 14, 15 Electromagnetic compatibility (EMC) 263 EMC Directive 252, 262 EN 60204-1 + A1 263 EN 61000-6-2 263 EN 61000-6-4 + A1 263 EN 61000-6-4 + A1 263 EN ISO 10218-1 263 EN ISO 10218-1 263 EN ISO 12100 263 EN ISO 13849-1 262 EN ISO 13849-2 262 EN ISO 13850 262 Extension 204 External axes 251, 253

F

KR QUANTEC extra

Faults 258 Fork lift truck 272 Foundry robots 36, 43, 57, 64, 78, 85, 99, 106, 120, 127, 141, 148, 162, 169, 184, 192 Foundry, equipment 36, 43, 57, 64, 78, 85, 99, 106, 120, 127, 141, 148, 162, 169, 184, 192 Function test 259

G

General information 203 General safety measures 257

н

Handling equipment 272 Hazardous substances 262

In-line wrist 14, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103, 110, 117, 124, 131, 139, 146, 153, 159, 166, 173, 181, 189, 196 Industrial robot 251 Intended use 252 Interface, energy supply systems 270 Interfaces 269 Introduction 9

Κ

KCP 13, 204, 253, 257 Keyboard, external 257 KUKA Customer Support 277 KUKA smartPAD 13, 253

L

Labeling 256 Liability 251 Lifting tackle 272 Linear unit 251 Link arm 14 Loads acting on the foundation, KR 120 R2900 extra 118 Loads acting on the foundation, KR 120 R2900 extra C 139 Loads acting on the foundation, KR 120 R2900 extra C-F 146 Loads acting on the foundation, KR 120 R2900 extra C-F-HP 153 Loads acting on the foundation, KR 120 R2900 extra F 125 Loads acting on the foundation, KR 120 R2900 extra F-HP 132 Loads acting on the foundation, KR 150 R2700 extra 76 Loads acting on the foundation, KR 150 R2700 extra C 97 Loads acting on the foundation, KR 150 R2700 extra C-F 104 Loads acting on the foundation, KR 150 R2700 extra C-F-HP 111 Loads acting on the foundation, KR 150 R2700 extra F 83

Loads acting on the foundation, KR 150 R2700 extra F-HP 90 Loads acting on the foundation, KR 180 R2500 extra 34 Loads acting on the foundation, KR 180 R2500 extra C 55 Loads acting on the foundation, KR 180 R2500 extra C-F 62 Loads acting on the foundation, KR 180 R2500 extra C-F-HP 69 Loads acting on the foundation, KR 180 R2500 extra F 41 Loads acting on the foundation, KR 180 R2500 extra F-HP 48 Loads acting on the foundation, KR 210 R2700 extra 27 Loads acting on the foundation, KR 90 R3100 extra 160 Loads acting on the foundation, KR 90 R3100 extra C 182 Loads acting on the foundation, KR 90 R3100 extra C-F 190 Loads acting on the foundation, KR 90 R3100 extra C-F-HP 197 Loads acting on the foundation, KR 90 R3100 extra F 167 Loads acting on the foundation, KR 90 R3100 extra F-HP 174 Low Voltage Directive 252

Μ

Machine frame mounting assembly with centering 268 Machinery Directive 252, 262 main axes 204 Maintenance 260 Manipulator 13, 251, 253 Manual mode 259 Mechanical axis range limitation 255 Mechanical end stops 255 Minimum bending radius 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100, 107, 114, 121, 128, 135, 142, 149, 156, 163, 170, 177, 185, 193 Mounting base with centering 265 Mounting flange 14, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 117, 124, 131, 139, 146, 153, 160, 167, 174, 181, 189, 196 Mounting flange, adapter (optional) 275 Mouse, external 257

0

Operator 253, 254 Options 13, 15, 251, 275 Overload 257

Payload diagram 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103, 110, 117, 124, 131, 138, 145, 152, 159, 166, 173, 181, 189, 196 Payloads, KR 120 R2900 extra 116 Payloads, KR 120 R2900 extra C 137

Payloads, KR 120 R2900 extra C-F 144 Payloads, KR 120 R2900 extra C-F-HP 151 Payloads, KR 120 R2900 extra F 123, 165 Payloads, KR 120 R2900 extra F-HP 130 Payloads, KR 150 R2700 extra 74 Payloads, KR 150 R2700 extra C 95 Payloads, KR 150 R2700 extra C-F 102 Payloads, KR 150 R2700 extra C-F-HP 109 Payloads, KR 150 R2700 extra F 81 Payloads, KR 150 R2700 extra F-HP 88 Payloads, KR 180 R2500 extra 32 Payloads, KR 180 R2500 extra C 53 Payloads, KR 180 R2500 extra C-F 60 Payloads, KR 180 R2500 extra C-F-HP 67 Payloads, KR 180 R2500 extra F 39 Payloads, KR 180 R2500 extra F-HP 46 Payloads, KR 210 R2700 extra 25 Payloads, KR 90 R3100 extra 158 Payloads, KR 90 R3100 extra C 179 Payloads, KR 90 R3100 extra C-F 187 Payloads, KR 90 R3100 extra C-F-HP 195 Payloads, KR 90 R3100 extra F-HP 172 Personnel 253 Planning 265 Plant integrator 253 Plates and labels 200 Positioner 251 Pressure Equipment Directive 15, 261, 262 Pressure regulator 36, 43, 57, 64, 78, 85, 99, 106, 120, 127, 141, 148, 162, 169, 184, 192 Preventive maintenance work 261 Principal components 13 Product description 13 Program override, motion velocity 204 Protective circuit 15 Protective equipment, overview 255 Purpose 11

R

Reaction distance 253 Recommissioning 258 Release device 256 Release device, option 276 Repair 260 Robot controller 13, 251 Robot system 13 Rotating column 14

S

Safety 251 Safety instructions 9 Safety of machinery 262, 263 Safety zone 253, 254 Safety, general 251 Service life 253 Service, KUKA Roboter GmbH 277 Single axis (optional) 276 smartPAD 204, 253, 257 Software 13, 251 Start-up 258 STOP 0 204, 253 STOP 1 204, 253 STOP 2 253 Stop category 0 253 Stop category 1 253 Stop category 2 253 Stop signal 203 Stopping distance 203, 253 Stopping distances 203, 205, 210, 215, 220, 225, 230, 235, 240, 245 Stopping time 203 Stopping times 203, 205, 210, 215, 220, 225, 230, 235, 240, 245 Storage 262 Supplementary load 199 Support request 277 System integrator 252, 253, 254

Т

T1 253 T2 253 Teach pendant 13, 251 Technical data 17 Technical data, KR 120 R2900 extra 113 Technical data, KR 120 R2900 extra C 134 Technical data, KR 120 R2900 extra C-F 141 Technical data, KR 120 R2900 extra C-F-HP 148 Technical data, KR 120 R2900 extra F-HP 127 Technical data, KR 150 R2700 extra 71 Technical data, KR 150 R2700 extra C 92 Technical data, KR 150 R2700 extra C-F 99 Technical data, KR 150 R2700 extra C-F-HP 106 Technical data, KR 150 R2700 extra F 78 Technical data, KR 150 R2700 extra F-HP 85 Technical data, KR 180 R2500 extra 29 Technical data, KR 180 R2500 extra C 50 Technical data, KR 180 R2500 extra C-F 57 Technical data, KR 180 R2500 extra C-F-HP 64 Technical data, KR 180 R2500 extra F 36, 120 Technical data, KR 180 R2500 extra F-HP 43 Technical data, KR 210 R2700 extra 22 Technical data, KR 90 R3100 extra 155 Technical data, KR 90 R3100 extra C 176 Technical data, KR 90 R3100 extra C-F 183 Technical data, KR 90 R3100 extra C-F-HP 191 Technical data, KR 90 R3100 extra F 162 Technical data, KR 90 R3100 extra F-HP 169 Technical data, overview 17 Terms used 204 Terms used, safety 253 Training 11 Transportation 258, 271 Transportation by fork lift truck 272 Transportation with lifting tackle 272 Turn-tilt table 251

U

Use, contrary to intended use 251 Use, improper 251 User 253, 254 Users 11

KUKA KR QUANTEC extra

W

Warnings 9 Working range limitation 255 Workspace 253, 254

KR QUANTEC extra